有限元分析方法基本原理-2020-09-29
- 格式:pptx
- 大小:54.05 MB
- 文档页数:57
3杆系结构的有限元法有限元法是一种常用的结构分析方法,可以用来分析各种复杂的结构问题。
其中,杆系结构的有限元法是一种专门针对杆系结构及其变形特性的有限元分析方法。
本文将从有限元法的基本原理、杆系结构的有限元剖分、杆单元的刚度矩阵计算和应力计算四个方面介绍杆系结构的有限元法。
有限元法的基本原理:有限元法是一种将连续物体离散化为有限个独立几何单元的数值分析方法。
它的基本原理是将连续结构按一定的规则划分为若干个互不重叠的子域,然后在每个子域上建立适当的求解方程和函数,最后将各个子域的问题合并起来,得到整个结构的解。
有限元法可以将连续问题转化为一个线性代数方程组的求解问题,然后通过数值计算方法求解方程组,得到结构的变形、应力等信息。
杆系结构的有限元剖分:杆系结构是由多根杆件组成的结构体系。
在进行有限元分析时,需要将杆系结构进行剖分,将其离散化为有限个杆单元。
杆系结构的剖分方式可以有多种,常见的有线性剖分和非线性剖分。
线性剖分是指将每根杆件均匀地划分为若干个子单元,每个子单元长度相等。
线性剖分的好处是计算简单,但是在一些情况下不够准确。
非线性剖分是指根据杆件的曲线形状和载荷变化特点,对杆件进行不规则剖分。
这样可以更准确地描述杆系结构的实际变形情况。
非线性剖分的好处是结果更准确,但计算量相对较大。
杆单元的刚度矩阵计算:一般来说,杆单元的刚度矩阵可以通过两种方法进行计算:力法和位移法。
力法是指通过杆件上的内力和外力之间的平衡关系,推导出杆单元的刚度矩阵。
力法的基本原理是,杆单元上的总应变等于外力产生的内力,即σ=Eε=F/A。
其中,σ为应力,E为弹性模量,ε为应变,F为外力,A为杆单元的截面积。
位移法是指通过位移与应变之间的关系,推导出杆单元的刚度矩阵。
位移法的基本原理是,根据虚功原理和位移互相独立的原则,建立位移-应变-应力关系,然后通过对位移表达式积分,得到杆单元的刚度矩阵。
杆单元的应力计算:在有限元分析中,杆单元的应力计算是非常重要的一步。
有限单元法的基本原理有限单元法(Finite Element Method,FEM)是一种常用于工程和科学领域中求解复杂问题的数值方法。
它的基本原理可以概括为将复杂的连续问题离散化为简单的有限个单元,然后利用数值方法对各个单元进行分析,最终得到整个问题的近似解。
以下将详细介绍有限单元法的基本原理。
1.连续问题的离散化:2.单元的建立:利用有限单元法,每个单元内部的位移和应力分布可以通过简单的变换关系来表示。
通常,在每个单元内部选择一种合适的形状函数来表示位移和应力的连续变化。
在线性有限元分析中,常用的形状函数为线性函数,而在非线性有限元分析中,常用的形状函数可以是二次或更高次函数。
3.边界条件的施加:在有限单元法中,为了求解问题的唯一解,必须施加适当的边界条件。
边界条件可以是约束位移、施加力或给定的位移等。
通过施加适当的边界条件,可以将问题转化为一个封闭的系统,方便求解。
4.系统的建立:利用有限单元法,可以将整个问题表示为一个线性或非线性的代数方程组。
构建这个方程组需要考虑到每个单元的位移和应力之间的关系。
通过组装每个单元的刚度矩阵和力向量,最终可以得到整个问题的刚度矩阵和力向量。
5.方程组的求解:得到整个问题的刚度矩阵和力向量后,可以使用各种数值方法求解代数方程组。
常用的方法有直接法(如高斯消元法)和迭代法(如共轭梯度法)。
求解得到的位移和应力即为整个问题的近似解。
6.解的后处理:在有限单元法中,为了解决工程问题,通常需要进一步对位移和应力进行后处理。
后处理可以包括计算其他感兴趣的物理量、绘制应力和位移图等。
通过后处理,可以更好地理解问题的本质和它们的工程意义。
总结起来,有限单元法通过将连续问题离散化为有限个单元,然后使用适当的形状函数表示位移和应力的连续变化,通过施加边界条件和构建代数方程组,最终得到问题的近似解。
有限单元法在工程和科学领域中被广泛应用,可以有效地解决各种复杂问题。
有限元分析的基本原理有限元分析法是一种通用的数值分析技术,它利用有限数目的计算元素来对结构的应力、变形以及失效的可能性进行分析,它简化了复杂的工程结构在实际受力情况下的模拟计算,可以预测出构件的性能、变形和可能失效等。
有限元分析是用数学模型来模拟生活用来模拟工程中结构抗压、抗弯、抗剪、抗疲劳等性能。
有限元分析有三个基本原理:结构变形、力学方程和材料本构方程。
首先,有限元分析的基础原理是结构变形。
结构变形是指在施加外力作用下,受力的结构的空间变形和大小的变化,它是有限元分析的基础,该原理说明了满足力学方程的解决方法如何以有限元的形式出现。
通常情况下,我们会把构件的耦合变形分成很多小的计算元(这些计算元之间有连接约束),减少变形的不确定性,从而提高分析的准确性。
其次,有限元分析的基础原理是力学方程。
满足力学方程条件的解决方案就是有限元分析,也就是把问题分解成很多小的子问题来求解。
力学方程最常见的形式是基于有限元技术的动态和静态结构分析。
动态结构分析是指结构在某个加载下的振动反应,涉及到施加外力、弹性和惯性效应。
静态结构分析则指结构在不同类型外力作用下的变形。
最后,有限元分析的基础原理是材料本构方程。
材料本构方程是指材料受拉力作用而形成变形和应力的关系,它可以用来描述材料在承受外力时的作用。
本构方程有很多不同的形式,最常用的形式是弹性体的本构方程,它说明了当受到外力作用时,材料的拉伸和压缩的反应,从而将其应用于有限元分析技术。
以上就是有限元分析的基本原理,它是构成有限元分析的基础,而且这些基本原理也被广泛应用于工程中对结构性能进行模拟和分析。
有限元分析可以帮助工程师准确地估算出结构在特定加载条件下的变形和应力,也可以帮助他们判断结构在疲劳荷载作用下是否会发生破坏。
有限元分析也可以帮助设计者更好地分析结构在复杂(多变)条件下的性能,以确定结构的最优设计。
所以,有限元分析的基本原理是工程分析的基础,合理的运用可以节约大量的时间和精力,从而达到性能最优的结构设计。
有限元分析方法范文有限元分析(finite element analysis,FEA)是一种广泛应用于工程领域中的数值分析方法。
它可用于模拟和预测物理系统中的结构和行为,并在设计和优化过程中提供指导。
在本文中,我们将详细介绍有限元分析的基本原理、步骤和应用。
有限元分析的基本原理是将真实的结构或物理系统离散为有限数量的较小单元,称为有限元。
这些有限元由一组连续性方程和材料属性定义。
然后,通过求解这些有限元之间的相互作用,可以得出整体系统的行为。
这种离散成小单元的方法允许对大型和复杂系统进行数值模拟,并提供对系统行为的准确预测。
1.建立几何模型:根据实际结构或物理系统的特征,使用计算机辅助设计软件(CAD)绘制几何模型。
这个模型可以是二维平面模型或三维立体模型。
2.网格划分:将几何模型离散成许多小单元,形成网格。
这些小单元通常是三角形或四边形,对应于二维平面模型;或者是四面体或六面体,对应于三维立体模型。
网格的密度和形状对分析结果的准确性和计算效率有重要影响。
3.定义边界条件:在模型上定义边界条件,包括约束边界和加载边界。
约束边界指定了结构的固定点或固定方向,而加载边界指定了模型上施加的外部力或重力。
4.定义材料属性:为每个有限元指定材料的性质,如弹性模量、密度、屈服强度等。
这些材料属性对于模拟系统的行为和响应至关重要。
5.建立有限元模型:根据几何模型、网格和边界条件,建立有限元模型。
这包括定义有限元的类型、节点位置和连接关系。
6.设置求解器:选择适当的求解器以求解有限元模型。
求解器根据有限元模型的离散特性和边界条件计算出系统的响应和行为。
7.求解和分析:通过求解器计算出系统的响应、位移、应力、应变等。
根据这些结果,可以进行进一步的分析和优化,如强度校核、结构优化等。
有限元分析方法广泛应用于工程领域,包括机械工程、土木工程、航空航天工程、电气工程等。
它可以用于分析结构的强度、刚度、稳定性,预测系统的振动、疲劳和破坏行为,优化设计和减少成本。
有限元分析法在零件实体设计中的应用有限元分析法是一种计算机辅助的系统工程设计方法,已被广泛应用于设计和开发各种零部件和结构。
在零件实体设计中,有限元分析法可以帮助工程师快速、准确地评估设计方案的可行性和优劣。
有限元分析法基于解非线性方程组的原理,将实际结构分解成大量小的三角形或四边形等基本单元,然后将每个单元内的物理场用数学表达式描述出来,最后通过计算机求解得到整体结构的物理场分布。
这样,我们可以在设计阶段预测零件实体所承受的应力、变形等物理量变化,进而指导零件实体的改善和优化。
在零件实体设计中,有限元分析法的应用涉及到了多个方面:首先是结构的强度分析。
零件实体最基本的功能就是承受载荷,因此强度分析是设计过程中必须进行的步骤。
有限元分析法可以帮助工程师预测零件实体在不同载荷下的应力及应力变化规律,以及材料的最大应力等指标,为设计提供充分的参考。
其次是结构的稳定性分析。
有时候,零件实体的几何形状会导致其发生屈曲或失稳,这会对结构的可靠性产生不良影响。
有限元分析法可以帮助工程师进行失稳分析,找到零件实体发生失稳的条件和特征,进而指导结构改进。
此外,有限元分析法还可以用于结构的疲劳分析。
零件实体在使用中经常会受到很多交变载荷的作用,这会对其疲劳寿命产生影响。
有限元分析法可以帮助工程师预测零件实体在不同载荷下的疲劳寿命,并评估结构的可靠性。
总之,有限元分析法是一种非常有用的数值分析方法,可以帮助工程师有效地预测零件实体在不同载荷和应力条件下的响应,进而指导设计方案的改进和优化。
随着计算机技术的不断进步,有限元分析法的应用将会越来越广泛,对提高零件实体的设计质量和生产效率将起到越来越重要的作用。
数据是现代社会中不可或缺的一项资源,对于各种领域和行业而言,数据的收集、整理、分析都至关重要。
下面将以某公司为例,列出其相关数据并进行分析。
数据1:销售额(单位:万美元)2016年:20,0002017年:25,0002018年:28,0002019年:30,0002020年:35,000分析:该公司的销售额呈现出稳步增长的趋势,从2016年的20,000万美元增加到2020年的35,000万美元,增长了75%左右。
有限元的原理有限元分析是一种工程数值分析方法,它利用数学原理和计算机技术,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是将复杂的结构分割成许多小的单元,通过对每个单元的力学行为进行精确描述,最终得到整个结构的力学响应。
本文将从有限元分析的基本原理、步骤和应用进行介绍。
有限元分析的基本原理是离散化方法,它将一个连续的结构分解成有限个单元,每个单元都是一个简单的几何形状,如三角形、四边形等。
然后对每个单元进行力学建模,建立单元的位移场和应力场的数学模型。
通过组合所有单元的数学模型,得到整个结构的位移场和应力场的近似解。
有限元分析的基本原理是基于弹性力学理论,它假设结构在受力作用下是弹性变形,即满足胡克定律。
有限元分析的数学模型通常是一个大型的代数方程组,通过求解这个方程组,得到结构的位移场和应力场。
有限元分析的步骤包括建立有限元模型、施加边界条件、求解代数方程组和后处理结果。
首先,需要对结构进行几何建模,将结构分解成有限个单元,并确定每个单元的材料性质和几何尺寸。
然后,需要施加边界条件,即给定结构的约束条件和外载荷。
接下来,需要将结构的力学行为建立成代数方程组,通常采用有限元法中的单元法则和变分原理。
最后,通过求解代数方程组,得到结构的位移场和应力场,并进行后处理,如应力分布、位移云图等。
有限元分析在工程领域有着广泛的应用,如结构分析、热传导分析、流体力学分析等。
在结构分析中,有限元分析可以用于预测结构的强度、刚度和稳定性,为结构设计提供理论依据。
在热传导分析中,有限元分析可以用于预测结构的温度分布和热传导性能,为热工设计提供支持。
在流体力学分析中,有限元分析可以用于模拟流体在结构内部的流动行为,为流体工程设计提供参考。
总之,有限元分析是一种强大的工程数值分析方法,它通过离散化方法和数学建模,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是基于弹性力学理论,通过求解代数方程组,得到结构的位移场和应力场。
有限元分析的基本原理有限元分析(Finite Element Analysis,FEA)是一种工程分析方法,它通过将复杂的结构分割成有限数量的简单单元,然后利用数学方法对每个单元进行分析,最终得出整个结构的行为。
有限元分析方法在工程领域得到了广泛的应用,可以用于求解结构的应力、挠度、热传导、流体流动等问题,是一种非常有效的分析工具。
有限元分析的基本原理可以归纳为以下几点:1. 离散化,有限元分析将连续的结构离散化为有限数量的单元,这些单元可以是三角形、四边形、四面体、六面体等形状。
每个单元都有自己的节点和自由度,通过对单元的组合,可以得到整个结构的离散模型。
2. 建立方程,对于每个单元,可以建立其位移与受力之间的关系,这通常可以通过弹性力学理论得到。
然后将所有单元的位移-受力关系组合成整个结构的方程,这个方程描述了整个结构的行为。
3. 求解方程,得到整个结构的方程之后,可以通过数值方法对其进行求解,得到结构在给定载荷下的响应,包括位移、应力、应变等信息。
4. 后处理,最后,对求解得到的结果进行后处理,可以得到结构的各种性能指标,比如最大应力、挠度、疲劳寿命等。
这些指标可以帮助工程师评估结构的安全性和可靠性。
有限元分析的基本原理非常简单,但在实际应用中却有着复杂的数学和计算机实现。
通过有限元分析,工程师可以更好地理解结构的行为,设计更安全、更经济的产品。
有限元分析方法的发展也为工程领域的发展提供了强大的支持,可以预测结构在各种复杂载荷下的响应,为工程设计提供了重要的参考依据。
总的来说,有限元分析是一种非常重要的工程分析方法,它的基本原理是将复杂的结构离散化,建立数学模型,通过数值方法求解得到结构的响应。
有限元分析方法的发展为工程领域的发展做出了重要贡献,相信在未来的发展中,它将发挥更加重要的作用。
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
有限元技术有限元技术(Finite Element Method,FEM)是一种数值分析方法,用于解决各种工程和科学领域中的问题。
它能够对复杂的结构进行建模和仿真,提供准确的结果和可靠的预测,广泛应用于结构力学、流体力学、热传导、电磁等领域。
1. 有限元分析的基本原理有限元分析的基本原理是将研究对象(如结构或材料)划分为有限数量的离散单元,然后通过数学方法,求解每个单元上的物理场变量(如应力、位移、温度等),最终得到整个系统的行为。
有限元分析包括以下几个基本步骤:a. 建立几何模型根据实际情况,使用CAD软件或其他建模工具,绘制出几何形状并生成体网格或表面网格模型。
b. 划分单元将几何模型划分为有限数量的单元,如三角形单元、四边形单元、六面体单元等。
每个单元包含一组节点和单元的刚度矩阵。
c. 定义物理特性为每个单元定义材料特性,如弹性模量、泊松比、热传导系数等。
这些特性将被用于计算单元的刚度矩阵。
d. 建立总体刚度方程通过组装每个单元的刚度矩阵,建立整个系统的总体刚度方程。
该方程描述了系统中所有节点的位移与外部载荷之间的关系。
e. 施加边界条件根据实际情况,为一些节点施加边界条件,如固定位移或施加力。
这些条件将在求解器中被考虑。
f. 求解方程通过求解总体刚度方程,得到系统中每个节点的位移、应力或其他物理场变量的数值结果。
g. 后处理和分析根据需求,对求解结果进行后处理和分析,如应变分布、应力分布、位移分布等。
这些结果可以用于判断结构的安全性、优化设计以及预测结构的性能。
2. 有限元技术的优势和应用有限元技术具有以下优势和应用:a. 高度灵活有限元技术可以对复杂的结构进行灵活建模,不受几何形状、材料特性和边界条件的限制。
因此,它可以应用于各种领域,如航空航天、汽车工程、建筑设计、材料科学等。
b. 高精度由于采用了离散化的方法,有限元分析可以提供高精度的结果。
通过增加单元的数量和改进材料模型,可以进一步提高精度。
有限元法的基本原理和应用前言有限元法(Finite Element Method,简称FEM)是一种常用的数值分析方法,用于求解工程和物理问题。
它能够将一个复杂的问题分解为许多小的、简单的部分,通过数学方法将这些部分逼近为连续函数,并进行求解。
本文将介绍有限元法的基本原理和应用。
基本原理1.离散化:有限元法将连续域分解为多个离散的小单元,这些小单元称为有限元。
离散化可以将复杂问题简化为易于处理的小部分。
每个有限元由节点和单元组成,节点是问题解的近似点,单元是在节点周围定义的几何形状。
2.变量表示:在有限元法中,通过数学函数对变量进行近似表示。
常用的近似函数有线性、二次、三次等。
通过选择合适的形状函数,可以有效地近似解决问题。
3.形成方程:根据物理方程,将离散域中每个有限元的贡献进行求和,形成一个整体方程。
这个整体方程可以是线性方程、非线性方程、常微分方程等。
通过求解这个整体方程,可以得到问题的解。
应用领域有限元法广泛应用于各个领域,包括但不限于: - 结构分析:有限元法可以用来模拟和分析工程结构的强度、刚度和振动等特性。
通过对结构进行有限元分析,可以预测和优化结构的性能。
- 热传导:有限元法可以用来模拟物体内部的温度分布和热传导过程。
通过对热传导问题进行有限元分析,可以优化物体的热设计和散热能力。
- 流体力学:有限元法可以用来模拟和分析流体的流动和压力分布。
通过对流体力学问题进行有限元分析,可以优化管道、风扇等设备的设计。
- 电磁场:有限元法可以用来模拟和分析电磁场的分布和电磁设备的性能。
通过对电磁场问题进行有限元分析,可以优化电磁设备的设计和电磁干扰问题。
有限元法的优点和局限性•优点:有限元法适用于复杂的几何形状和边界条件,并可以考虑多物理场耦合。
它具有较高的灵活性,可以适应各种问题的求解。
•局限性:有限元法的计算精度和效率受到离散化精度和网格剖分的影响。
对于高度非线性和大变形问题,有限元法可能需要更多的时间和计算资源。
有限元方法基本原理有限元方法被广泛应用于工程领域中对复杂结构力学问题的求解。
其基本原理是将一个复杂的实体分割成连续的小元素,并在每个小元素内近似描述结构的力学行为。
然后根据各个小元素的相互连接关系,通过求解各个小元素的力学方程,得到整个结构体系的力学响应。
在有限元方法中,划分成小元素的实体被称为有限元。
每个有限元内会选择一个适当的数学函数形式来近似描述该元素内的过程变量(如位移、应力等)。
通常,利用多项式函数或三角函数来近似描述是较为常见的选择。
有限元法的基本思想是利用小元素内的力学方程来建立元素间的联系。
这一联系通过引入节点来实现。
节点是在有限元网格上选取的特殊位置,在节点处的位移和应力是所有相邻元素的位移和应力的加权平均。
在整体结构体系上,所有节点只有两种运动自由度(如平面问题为两个:水平和垂直方向),我们将节点处对应的变量称为自由度。
有限元分析的过程可以分为网格划分、单元插值、力学方程建立和边界条件处理四个主要步骤。
首先,将整个结构体系划分成小的有限元。
然后,在每个有限元内部选择一个插值函数,并利用插值函数得到相应的位移和应力的近似解。
接下来,根据物体在各个小元素上的力学原则,建立每个小元素的力学方程。
最后,在整个结构体系上,应用边界条件将自由度限制在给定的边界条件下。
通过求解各个小元素的力学方程,可以得到整个结构体系的应力、应变和位移分布。
这些分析结果可以用来评估结构的强度、刚度和稳定性等重要参数。
有限元方法的优点在于它能够处理复杂的几何形状和边界条件,并提供了精确的力学响应。
因此,它被广泛用于各个工程领域中的结构设计和分析中。
2.1.1 有限元法基本原理(Basic Theory of FEM)有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。
根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。
这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。
有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。
以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。
由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。
有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。
再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。
2.1.2 有限元法基本步骤(Basic Process of FEM)有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]:1. 结构的离散化结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。
将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。
离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。
所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。
这样,用有限元分析计算所获得的结果是近似的。
显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。