初中人教版七年级不等式知识点总结
- 格式:doc
- 大小:227.00 KB
- 文档页数:6
一元一次不等式(组 )一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为 1四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
流 第九章 一元一次不等式【基础知识梳理】一、 一元一次不等式1.不等式的基本性质:(1)不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.(2)不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a>b ,c>0,那么ac>bc 或a c >b c. (3)不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向① ,用式子表示:a>b ,c<0,那么,ac ② bc 或a c ③b c. 2.解一元一次不等式的一般步骤:去分母,去括号,移项,合并 ④ ,把系数化为1.3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:注意:表示4的点上画空心圆圈,表示不包括这一点.温馨提示:不等式的性质是解不等式的重要依据.在解不等式时,值得注意的是在不等式的两边除以一个负数时,不等号的方向一定要改变.二、一元一次不等式组一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集;求不等式组解集的过程,叫做解不等式组.⑴ 温馨提示:求几个一元一次不等式组的解集的公共部分,通常是利用数轴来确定.公共部分是指数轴上被两条不等式解集的区域都覆盖住的部分.⑵ 求解不等式组的关键是求一元一次不等式的解集.由于一元一次不等式都可转化为x >a 或x <a 的最简形式,因此只要分为两种情形讨论其解集即可(不妨设a>b):① 当不等号的方向一致时(称同向不等式),即:流对这类不等式组可按“同大取大;同小取小”的法则,即取公共部分为它的解(如图1).图1 图2所以在图1中,不等式组的解集为x>a, 在图2中,不等式组的解集为⑤.②当不等号的方向相反时(称异向不等式),即:则若未知数的取值比大数小,比小数大时,不等式组的解集在两数之间,取公共部分(如图3);图3所以在图3中,不等式组的解集为⑥.若未知数的取值比大数还大,比小数还小,不等式组的解集是空集,即没有公共部分(如图4).图4所以在图3中,不等式组的解集为空集,即无解.上述不等式组的解集用一句顺口溜表示为” 同大取大, 同小取小,小大大小中间找, 大大小小解不了(答:无解).三、不等式(组)的应用1.列不等式解应用题的基本步骤:①审题;②设未知数;③列不等式;④解不等式;⑤检验并写出答案.2.列不等式组解决实际问题与列一次方程组解决实际问题的步骤大致相同,不同的是前者寻找不等量关系,后者建立的是等量关系,并且解不等式组所得的结果通常为一解集,需从解集中找出符合题意的答案.流【考点例析】一、不等式的基本性质例1、若a<b<0,则下列式子:①a+1<b+1; ②a b >1;③a+b<ab ;④1a <1b 中,正确的有( )A .1个B .2个C .3个D .4个分析与解:本题就是不等式性质的应用.对于①是在不等式两边都加上1,根据不等式性质1,该不等式成立;对于②是在不等式两边同时除以b,因为b 是负数, 根据不等式的基本性质,同乘同除一个负数时,不等号的方向要改变,所以②也正确;对于③,因为a<b<0,所以a+b<0,ab>0,所以③正确;对于④是在不等式的两边同乘以1ab >0,可得1a >1b ,故④不正确,故选C. 点拨:不等式的基本性质是不等式的核心,特别要注意不等式的性质3的利用,不等号的方向要改变.二、不等式解的表示方法例2. 解集在数轴上表示为如图5所示的不等式组是( )A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤ 分析与解:不等式(组)的解集在数轴上表示的形状是一条射线,小于向左画,大于向右画,无等号的画空心圆圈,有等号的画实心圆点,因此判断不等式的解集为.32x x >-⎧⎨⎩≤,故选D.点拨:利用数轴表示不等式(组)的解,关键要熟知不等号的表示方法.尤其是空心和实心的区别.三、不等式(组)解法步骤例3. 解不等式组,并把它的解集表示在数轴上:23-图5流 3(1)7251.3x x x x --⎧⎪⎨--<⎪⎩≤, ① ②分析与解:解不等式①,得2x -≥;解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图: 或者根据“同大取大;同小取小;小大大小中间找,大大小小解不了”的原则,可以得到:原不等式组的解集是122x -<-≤. 点拨:会解不等式(组)是一个基本要求,关键是利用好不等式的基本性质,同时要注意解的范围的确定方法.四、不等式(或组)的整数解问题例4. 解不等式组 ⎪⎩⎪⎨⎧->--≤-4315221x x x x 并求其整数解的和.分析:欲求整数解的和,就要求出它的整数解,而要求出整数解,就要先求出不等式组的解集,然后根据解集求出符合条件的整数解.解:解①,得23->x ;解②,得x ≤4,故不等式组的解是x <-23≤,4故它的 整数解是-1,0,1,2,3,4,从而整数解的和是-1+0+1+2+3+4=9.点拨:解这类问题的一般步骤为:①求出一元一次不等式(组)的解集;②找出适合解集范围内的特殊解,如整数解、自然数解等.就本题而言,求出整数解后不要忘了求整数解的和.五、不等式式(或组)中待定字母范围的确定例5. (1)若不等式组2123x a x b -<⎧⎨->⎩的解集为—1<x<1,则(a+1)(b —1)的值是__________;2-1-01流 (2)若不等式3x-a ≤0的正整数解为1、2、3,则a 的取值范围是__________.分析:(1)先求出不等式组的解集,再与已知解集对照比较,确定a 、b 的值;(2)先求出不等式的解集,再利用数轴确定a 的取值范围. 解:(1)解原不等式组中的各个不等式得:1232a x x b+⎧<⎪⎨⎪>+⎩依题意知,解集为3+2b<x<a+12,又∵不等式组的解集为-1<x<1.∴ 112321a b +⎧=⎪⎨⎪+=-⎩(1)(2)由(1)得:a+1=2,由(2)得:b=—2,则b —1=—3,∴(a+1)(b —1)=2×(-3)=-6;(2)不等式的解集为x ≤a 3,如右图所示,解集为x ≤3到x<4范围内时,满足原不等式的正整数解恰好为1,2,3.故有:3≤a 3<4,解得9≤a<12.所以a 的取值范围是9≤a<12.点拨:确定不等式组中的字母的取值范围,主要有三种方法:(1)运用不等式的解集确定 ;(2)从反面求解确定;(3)借助数轴来确定。
一元一次不等式(组 )
考点一、不等式的概念
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做
这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式
的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法
考点二、不等式基本性质(3~5分)
1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如
果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
考点三、一元一次不等式(6--8分)
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的
两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项
的系数化为1
考点四、一元一次不等式组(8分)
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
(1)分别求出不等式组中各个不等式的解集
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
常见题型
一、选择题
在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )
A.-1<m<3 B.m>3 C.m<-1D.m>-1
已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. B. C. D.
四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是()
A、 B、 C、 D、
把不等式组的解集表示在数轴上正确的是()
不等式的解集是()
A.B.C.D.
若不等式组有实数解,则实数的取值范围是()
A.B.C.D.
若,则的大小关系为()
A.B.C. D.不能确定
不等式—x—5≤0的解集在数轴上表示正确的是()
不等式<的正整数解有( )
(A)1个(B)2个(C)3个(D)4个
把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.
不等式组,的解集是()
A. B. C. D.无解
不等式组的解集在数轴上可表示为()
A B C D
实数在数轴上对应的点如图所示,则,,的大小关系正确的是()
A.B.C. D.
如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()
A.a>c>b B.b>a>c C.a>b>c D.c>a>b
不等式组的解集在数轴上表示正确的是()
把不等式组的解集表示在数轴上,正确的为图3中的()
A. B. C. D.
用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量
从大到小的顺序排列应为()
不等式组的解集在数轴上可表示为()
在数轴上表示不等式组的解集,正确的是()
二、填空题
已知3x+4≤6+2(x-2),则的最小值等于________.
如图,已知函数和的图象交点为,则不等式的解集为.
不等式组的解集为.
不等式组的整数解的个数为.
6.已知关于的不等式组的整数解共有3个,则的取值范围是.
9.不等式组的解集是.
10.直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为.
13.已知不等式组的解集为-1<x<2,则(m+n)2008=__________.
三、简答题
解不等式组
解不等式组并写出该不等式组的最大整数解.
若不等式组的整数解是关于x的方程的根,求a的值。
解方程。
参考阅读材料,解答下列问题:
(1)方程的解为
(2)解不等式≥9;
解不等式组并把解集表示在下面的数轴上.
解不等式组
解不等式组:并判断是否满足该不等式组.
解不等式组,并把解集在数轴上表示出来.
解不等式组,并把解集在数轴上表示出来.
解不等式组:,并将其解集在数轴上表示出来.
解不等式,并把它的解集在数轴上表示出来.解不等式组,并将解集在数轴上表示出来.
解不等式组
解不等式:2(x+)-1≤-x+9
解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.解不等式组
解不等式组
解不等式组,并写出它的所有整数解.
解不等式组并求出所有整数解的和.
解不等式组:
解不等式组
解不等式组:,并把它的解集在数轴上表示出来。