城市轨道交通结构抗震设计规范
- 格式:ppt
- 大小:5.80 MB
- 文档页数:70
地铁车站抗震设计分析摘要:地铁地下结构是城市重要的公共基础设施,对城市生命和经济具有重大意义,因此对地铁地下结构进行抗震设计是非常必要的。
本文以某标准两层车站为计算模型,采用反应位移法和时程分析法两种方法进行地铁车站结构地震反应计算,并结合相关规范对计算结果进行了分析讨论,为类似工程及地下结构抗震研究具有一定的参考意义。
引言随着城市化的不断发展,为解决交通拥挤及效率问题,我国各大城市地铁建设迅猛发展。
地铁工程是城市重要的社会公共基础设施,其结构复杂且一旦损坏难以修复,会造成重大的经济损失。
而地铁等地下结构在地震中遭受重大震害的情况已有先例,如1985年墨西哥Ms8.1级地震造成的地铁隧道和车站结构破坏、1995年日本阪神Ms7.2级地震引起神户市大开地铁车站的严重破坏[1-3],因此对地下结构进行抗震分析是十分必要的。
众多学者对地铁等地下结构的抗震理论及规范进行了研究。
刘晶波等[4]阐述了地下结构抗震分析的五个关键问题,包括动力分析模型、结构-地基系统动力相互作用问题分析方法、地铁地下结构地震破坏模式和抗震性能评估方法、抗震构造措施,和地铁区间隧道穿越地震断层的设计方案及工程措施。
侯莉娜等[5]将《城市轨道交通结构抗震设计规范》和地上民用建筑抗震设计规范进行了对比分析,指出地铁地下结构可遵循“两水准、两阶段”的设计思路及地下结构抗震设计地震动参数应与其设计基准期一致等。
陈国兴等[6]对地下结构震害、动力离心机和振动台模型试验,以及工程师在地下结构抗震分析中可能用到的有效设计与分析方法等方面涉及的重要问题进行了简要和全面的回顾。
本文结合某标准两层车站的工程实例,阐述地铁地下结构抗震反应分析方法,并对计算结果进行分析,为城市地下结构抗震评估提供一定参考。
1.车站抗震反应分析概况1.1工程概况车站结构型式为地下两层两跨箱型框架结构,明挖法施工,标准段宽为20.1m,基坑开挖深度约为17m。
标准段剖面图如图1所示。
城市轨道交通结构抗震设计规范目录1.前言2.设计要求3.地震参数4.基础设计5.结构设计6.施工要求前言城市轨道交通是大城市中重要的公共交通方式。
地震对于轨道交通结构的安全稳定性具有很大的影响。
为此,我们制定了这份城市轨道交通结构抗震设计规范,以确保轨道交通设施在地震情况下的安全运行。
设计要求1.所有轨道交通结构在设计时必须考虑地震影响。
2.设计应遵守现行的国家标准和规范,同时考虑当地地震情况和实际情况。
3.设计中必须严格遵守相关要求和规定,并且必须得到相关部门的批准和验收。
地震参数1.设计应当考虑设施所在地的地震地表加速度反应谱。
2.设计应当结合地震波的某些规律进行地震动分析,以求得所需的地震力和地震反应。
基础设计1.设计时必须考虑地震对基础的影响,更具体地,应该考虑地震所产生的地基液化和基础沉降情况。
2.基础应该具有足够的稳定性和抗震能力,设计时应当考虑突发事故或高强度地震的情况。
结构设计1.对于轨道交通设施,应当考虑其耐震等级,以便在发生地震时保证设施的稳定性并减少人员和设备的损失。
2.设计中应当涵盖整个轨道交通结构,包括车站、隧道和桥梁等。
3.设计中应当考虑各种不同类型地震所产生的影响,并且针对这些影响采取相应的措施。
施工要求1.施工过程中应当注意专业技术,确保设计规范的实施。
2.施工中应当将地震安全考虑到整个过程中,包括材料的选用和施工方式。
3.设计方案应与施工方案紧密结合,施工中的所有环节应当符合设计规范中的要求。
结论这份城市轨道交通结构抗震设计规范能够在轨道交通结构地震安全提供指导。
在设计和施工过程中,应当确保设计规范的实施,施工细节要注意,以确保轨道交通设施在发生地震时的安全性和稳定性。
轨道交通工程地下车站结构抗震设计张有桔;王飞;沈洪波【摘要】综合抗震设计相关规范规定,结合抗震专项设计的要求,在分析抗震设防类别、等级及烈度、论证对象的判定基础上,明确基于性能要求的抗震设防目标,重点论述抗震专项设计中常用的反应位移法和时程分析法,通过对典型车站的抗震分析,说明抗震专项设计中主要计算过程和结论,以期为同类工程设计提供参考依据。
【期刊名称】《工程与建设》【年(卷),期】2016(030)003【总页数】4页(P361-364)【关键词】轨道交通;地下车站;抗震设计;设防目标;反应位移法;时程分析法【作者】张有桔;王飞;沈洪波【作者单位】安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088;安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088;安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088【正文语种】中文【中图分类】U231.4;TU352城市轨道交通已经成为城市极为重要的交通基础设施,所以通过抗震设计,使轨道交通工程具有合理的抵抗地震破坏作用的能力,确保城市轨道交通结构的地震安全,尽可能减轻轨道交通结构因地震导致性能降低给城市轨道交通的正常运行造成障碍,对城市交通秩序、城市经济和人们社会活动、生命及财产安全都是非常重要的。
文献[1-5]规定,对抗震设防地区的城市轨道交通结构必须进行抗震设计。
本文重点从抗震设防类别、等级及烈度、论证对象的判定、抗震设防目标和抗震论证方法等方面,阐述合肥市城市轨道交通常见的地下车站结构抗震专项设计思路和方法。
根据文献[1]要求,城市轨道交通结构应根据其使用功能的重要性分为标准设防类(丙类)、重点设防类(乙类)和特殊设防类(甲类)3个抗震设防类别。
对于一般日平均客流量未超过50万人次的大型综合枢纽车站,抗震设防分类均为重点设防类(乙类)。
对重点设防类地下车站结构,其设防标准应满足文献[2]规定的本地区抗震设防要求确定;对进行过地震安全性评价的,应采用经国家地震工作主管部门批准的建设工程抗震设防要求确定,但不应低于本地区抗震设防要求确定的地震作用。
轨道交通工程地下车站结构抗震设计摘要:随着我国城市化进程的不断加快,人们生活质量和周边环境也发生了翻天覆地变化。
随着城市人口数量的增长,城市腰痛压力越来越大,轨道交通工程地下车站的出现有助于环节交通压力。
但轨道交通不仅要满足运输功能,还要有一定安全性和抗震能力。
本文以A市B地下车站为例,展开地下车站抗震设计分析,分析结果可作为后续地下车站抗震设计相关参考。
关键词:轨道交通工程;地下车站;结构;抗震设计引言现代化城市建设过程中,城市轨道交通不仅要具备良好的运输能力,还要在设计方面充分考虑其抗震性能和安全性。
地下车站结构施工要严格按照国家规定相关抗震设计标准进行设计,如此不仅能提升地下车站抗震性能,还能为日后城市的健康、可持续发展奠定良好基础。
一、抗震设防目标(一)抗震设防类别、烈度与等级根据《城市轨道交通结构抗震设计规范》的相关要求,城市轨道交通结构应划分为:标准设防类;重点设防类;特殊设防类,三个抗震设防类别。
标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行国家标准《中国地震动参数区划图》GB 18306规定的本地区抗震设防要求确定;重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地震作用应按现行国家标准《中国地震动参数区划图》GB18306规定的本地区抗震设防要求确定;对进行过工程场地地震安全性评价的。
应采用经国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应低于本地区抗震设防要求确定的地震作用;特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高于本地区抗震设防要求确定[1]。
抗震设防地震动峰值加速度与抗震设防地震动分档和抗震设防烈度之间对应关系如表1所示。
表1:抗震设防地震动峰值加速度与抗震设防地震动分档和抗震设防烈度之间对应关系(二)论证对象的判定根据住房和城乡建设部印发的《市政公用设施抗震设防专项论证技术要点(地下工程篇)》的相关规定,轨道交通地下车站建筑面积超过10000㎡的可以判定该地下车站工程可以作为单体工程进行抗震专项论证分析。
轨道交通地铁防灾设计技术要求设计原则1.防灾设计应严格遵循国家有关政策方针,从全局出发,积极采用行之有效的技术措施,方便使用,经济合理。
2.轨道交通线的防灾主要指对火灾、水淹、地震、雷击等灾害的防范措施。
3.防灾设计应贯彻“预防为主、防消结合”的方针,尤其是采取防火措施,防止和减少火灾危害。
4.轨道交通线防火灾设计按同一时期内发生一次来考虑。
区间火灾按两座风井间滞留一列列车设计,列车火灾规模按10.5MW设计。
5.结构设计按六度地震烈度进行抗震验算,并按七度采取相应抗震构造措施,以提高结构和接头处的整体抗震能力。
6.隧道洞口雨水设计重现期采用50年。
7.设计选用有关消防器材和设备,必须是经国家法定检测部门检测合格的产品,并具有当地公安消防部门批准的准销证。
8.防灾设计主要有建筑消防、水消防系统、气体灭火系统、事故通风与排烟、供电设备及照明防灾、车辆防灾、区间隧道防灾、防灾通信、防灾报警与设备监控系统、电扶梯及安全门防灾等组成。
设计规范《地铁设计规范》(GB50157-2013)《建筑设计防火规范》(GBJ16-87)(修订本)《高层民用建筑设计防火规范》(GB50045-2014)《汽车库、修车库、停车场设计防火规范》(GB50067-97)《火灾自动报警系统设计规范》(GBJ116-88)《铁路给水排水设计规范》(TBJ10-85)《自动喷水灭火系统设计规范》(GB50084-2001)《建筑灭火器配置设计规范》(GBJ140-90)(1997年版)《洁净灭火剂灭火系统标准》(NFPA 2001 1996年)《轨道车辆防火措施》(DIN5510:2009)《载客列车设计与构造防火通用规范》(BS6853:1999)哈尔滨市消防部门现行有关规定和标准。
车站建筑防灾1.地下车站、出入口、风亭的建筑结构均按一级耐火等级考虑。
防灾设计严格按《地铁设计规范》第二十章执行,地上建筑工程耐火等级按国家现行有关规范执行,并需得到市消防处认可。
轨道交通地下车站结构抗震性能化设计分析摘要:近年来,我国的城市化进程有了很大进展,轨道交通工程建设也越来越多。
地下铁路是大城市发展的必需,其作为城市交通的骨干,能够很好的缓解交通压力,提高交通效率。
我国地震灾害发生频繁,地下铁路结构抵抗地震破坏作用的能力非常重要,直接关系着城市交通秩序和人民生命财产安全。
我国目前地铁建设发展比较迅速,关于地下结构的设计规范逐渐完善,但是对于地下结构抗震方面相关的研究还相对较少。
因而对地铁地下结构的抗震设计与分析十分有必要。
关键词:地铁;地下车站;抗震设计;反应位移法引言城市轨道交通车站在地面以上的称之为高架车站,车站具有一般地面建筑的特征和交通建筑的形态。
其作为城市主要的交通网,承担着城市交通的主要功能,其结构自身荷载大,安全等级高,结构抗震要求严格。
1抗震设防标准(1)对轨道工程中的地下车站结构和相关的地面附属结构比如是交通控制中心建筑,整体设计要大于等于100年;(2)地下车站中支护结构为永久性构建,保证刚度的条件下,要保证有100年的使用年限。
2抗震性能分析方法概述实际工程中,主要通过数值模拟对地下结构的抗震性能进行理论分析。
常用的数值模拟方法可分为以反应位移法、反应加速度法为代表的拟静力法,和以反应谱方法、时程分析法为代表的动力分析法两类。
反应位移法根据一维土层地震反应分析得到土层相对位移,由土层变形计算得到内力,并以地基弹簧的形式施加静荷载于结构上,从而获得结构的响应。
反应加速法通过一维土层地震反应分析获得的动力响应,计算得到不同深度处水平有效惯性加速度,并将其按体积力的方式作用与结构上,最终得到结构的响应。
拟静力法缺陷在于静力计算所得内力一般较实际动力值偏大,且对地震波的等效处理往往难以符合其不规则动态传播的实际情况。
反应谱方法相对于拟静力法增加反映了地震的频谱特性,但仍然无法考虑地震力持续作用的影响,其本质上属于一种修正的拟静力分析方法。
动力时程分析法可以全面地表达地震动强度、频谱特性和持续时间三大要素,分析具有过程性,更加符合实际情况,其缺陷在于计算时有较多的物理参数难以准确设定,且计算成本较大。