轴对称图形
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
轴对称图形和对称图形的区别是什么各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢对称图形包含轴对称图形,对称图形所包括的范围广,而轴对称图形属于对称图形的一种。
对称图形包括中心对称图形,轴对称图形,旋转对称图形。
中心对称图形中心对称图形上每一对对称点所连成的线段都被对称中心平分。
如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心对称图形。
轴对称图形而这个中心点,叫做中心对称点。
中心对称图形上每一对对称点所连成的线段都被对称中心平分。
在平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和另一个图形完全重合,那么就说这两个图形成中心对称。
这个点叫做对称中心。
常见的中心对称图形有矩形,菱形,正方形,平行四边形,圆,某些不规则图形等.正偶边形是中心对称图形正奇边形不是中心对称图形如:正三角形不是中心对称图形补充:等腰梯形也不是中心对称图形。
对称轴是一条直线!垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。
线段垂直平分线上的点到线段两端的距离相等。
在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
对称轴两边的面积是相等的。
轴对称的图形是全等的。
轴对称图形如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
旋转对称图形旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角..常见的旋转对称图形有:线段、正多边形、平行四边形、圆等。
注:所有的中心对称图形,都是旋转对称图形。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
轴对称与中心对称图形图形在数学中扮演着重要的角色,我们常常通过图形来进行分析和研究。
其中,轴对称和中心对称是两种常见的图形特征,本文将对这两种特征进行深入探讨。
一、轴对称图形轴对称图形是指具有轴对称特点的图形。
轴对称意味着图形可以通过一个轴进行镜像对称,即图形和其镜像重合。
简单来说,轴对称图形是左右完全对称的,即使折叠图形,两边也完全相同。
轴对称图形具有以下特点:1. 存在轴线:轴对称图形一定存在轴线,该轴线可以是垂直、水平或倾斜的。
2. 镜像关系:图形沿轴线进行折叠后,两侧完全对称。
3. 完全对称:图形的任意一点关于轴线,其对应点均重合于图形上。
常见的轴对称图形有正方形、长方形、圆形等。
这些图形的特点是左右对称,通过图形中的轴线可以轻松确定这些图形是否轴对称。
例如,对于一个正方形,通过从中心点绘制两条垂直、水平的轴线,可以发现图形可以完全折叠。
二、中心对称图形中心对称图形是指图形具有中心对称性质的图形。
中心对称意味着图形可以通过一个中心点进行旋转180度,使得旋转后的图形与原图形完全一致。
中心对称图形具有以下特点:1. 存在中心点:中心对称图形一定存在中心点,该中心点可以位于图形内部或边界上。
2. 旋转180度:图形绕中心点旋转180度后,与原图形完全一致。
3. 完全一致:图形的任意一点关于中心点,其对应点均重合于图形上。
常见的中心对称图形有正五边形、正六边形等。
这些图形的特点是任意一点到中心点的距离相等,并且旋转180度后的图形与原图形完全相同。
总结:轴对称和中心对称是图形的重要特征,通过观察和分析图形的对称性质,可以更好地理解图形的形态和结构。
轴对称图形以左右对称为主要特点,而中心对称图形以中心旋转180度为主要特点。
研究和了解这些对称性质,有助于我们更深入地理解数学中的图形学知识。
通过对轴对称和中心对称图形的介绍,我们可以更好地理解图形的形态和特点。
图形学是数学中的重要分支,通过研究图形的特征和性质,我们可以将其应用于各个领域,如几何学、计算机图形学等。
(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:①都是折叠重合②如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
生活中常见的轴对称图形
《镜面对称》。
生活中常见的轴对称图形,如菱形、心形、蝴蝶形等,都展现了一种美妙的对
称美感。
轴对称图形是指图形中存在一条轴线,使得图形关于这条轴线对称,即图形的两侧完全对称。
这种对称美感在我们的生活中无处不在,不仅存在于自然界中的植物、动物,也存在于建筑物、艺术品、日常用品等各个方面。
在自然界中,我们常常能够看到许多轴对称图形。
比如,植物的叶子往往都是
轴对称的,两侧完全对称,给人一种和谐美感。
蝴蝶的翅膀也是轴对称的,左右对称的翅膀给人一种优美的视觉享受。
而在建筑物中,许多古代建筑都采用了轴对称的设计,如中国的古代宫殿、寺庙等,都展现了一种庄严美感。
在现代建筑中,许多摩天大楼、桥梁等也采用了轴对称的设计,使得建筑物更加稳固美观。
除了自然界和建筑物,轴对称图形也广泛存在于艺术品和日常用品中。
许多绘
画作品中都运用了轴对称的构图,使得画面更加和谐美观。
而在日常用品中,许多家具、餐具等也采用了轴对称的设计,使得这些物品更加美观实用。
轴对称图形所展现的对称美感,不仅仅是一种视觉享受,更是一种心灵的愉悦。
它让人感受到一种和谐、稳定、美丽的力量,使得我们的生活更加丰富多彩。
因此,让我们在日常生活中多留意这些轴对称图形,感受它们带给我们的美妙。
文昌院教育学科教师辅导讲义课 题轴对称图形及性质教学内容轴对称图形及性质(1.1,1.2)第一节一、1. 轴对称定义:把一个图形沿一条直线这段,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称,也称这两个图形轴对称。
这条直线称为对称轴(对称轴是一条直线,不是射线或线段),两个图形的对应点(即沿对称轴对折后,能够重合的点)叫做对称点。
2. 轴对称图形定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形3. 轴对称与轴对称图形的区别:(1) 轴对称是两个图形的位置关系,轴对称图形是一个具有特殊形状的图形 (2) 轴对称涉及两个图形,轴对称是一个图形轴对称与轴对称图形的联系:(1) 定义中都有一条直线,沿这条直线折叠重合。
(2) 轴对称图形一定成轴对称,成轴对称的不一定是轴对称图形。
注意:轴对称图形的对称轴有的只有一条,有的存在多条 例1. 下列图形中是轴对称图形的是( )轴对称与轴对称图形轴对称的性质轴对称图形线段角等腰三角形等腰梯形轴对称图①②③④A.①②B.③④C.②③D.①④例2、下列轴对称图形中,对称轴最多的是().A、等腰直角三角形B、有一角为60的等腰三角形C、正方形D、圆例3.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的轴对称图形是( )例4、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个例5.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )二、轴对称的性质:(1.2)1. (1)线段垂直平分线:垂直并且平分一条线段的直线(线段垂直平分线是到线段两端距离相等的点的集合,即①经过线段的中点 ②垂直于线段,两者缺一不可。
)(2)作线段AB 的垂直平分线: ①分别以A 、B 为圆心,大于AB 21的长为半径画弧,两弧相交于点C 、D ②过C 、D 两点作直线③直线CD 就是线段AB 的垂直平分线 2.性质:①成中轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
冀教2011课标版小学数学三年级上册
第三单元《图形的运动一》《认识轴对称图形》教学设计
教学目标:
1、结合实例,经历感受轴对称现象,观察、操作等认识轴对称图形
的过程。
2、了解“对称”的含义,能找出生活中的对称现象,初步认识轴对称
图形。
3、在观察、想象轴对称图形形状的过程中,发展空间观念。
[教学重点] 掌握轴对称图形的特征,能准确判断哪些图形是轴对称图
形,并能找出轴对称图形的对称轴。
[教学难点] 准确找出轴对称图形的对称轴。
[学情分析]
对于小学三年级学生来说,三年级学生活泼好动,他们更多地关注“有
趣、好玩、新奇”的事物;对探究活动有着较强的兴趣,所以在教学
中充分利用学生的这一天性,力争让学生自己在欣赏美、创造美的过
程中去突破本节课的教学重难点。
【设计思路】:
创设情境,感知对称——自主探索,理解概念——动手实践,体会运
用——欣赏总结,升华知识。
[教学过程]
一、创设情境,感知对称。
1、猜一猜,老师出示两张花瓶图片(出示一半),请同学们猜一猜整
张图片是什么?然后从中间分开,发现了什么?激趣导入新课。
二、自主探索,理解概念。
1、 直观感知
为了让学生直观感知轴对称图形的特点,出示一组生活中的图片请学
生仔细观察,你发现这些图形有什么特点。给学生充分交流的时间,
重点说一说这些图片有什么共同特点。如,枫叶左右两边的形状一样,
蝴蝶两边的形状一样等。
2、 抽象概念
教师启发:这些图片的形状两边完全一样,你能指出是从哪分开的
吗?让学生指一指,可以在书上画一画。然后告诉学生:像这样两边
完全一样的图片,我们就说它们的形状是对称的。
3、提出“说一说”的要求,让学生交流在生活中见到的对称现象。
4、老师搜集图片欣赏,找出共同特征,理解对称现象。
三、动手操作,体会运用
◆做一做
1、指导学生按要求剪下附页中的图形,沿虚线对折。提示学生,看
一看:能发现什么?
2、交流学生操作的过程和发现的图形特点。在学生体验到这些图形
沿虚线对折后能完全重合的基础上,师生共同总结出“轴对称图形”和
“对称轴”的概念。
3、深化探究
让学生动手操作,折一折、说一说,从而引出轴对称图形的感念。
◆练一练
第1题,先判断哪些图片是对称的,再让学生自己画虚线,同桌互相
说一说。
第2题,学生先给图形一半涂色,然后折一折,说一说这几个图形各
有几条对称轴。使学生了解,有些轴对称图形有多条对称轴。如,正
方形有四条对称轴、圆有无数条对称轴。
第3题,先让学生自己连一连,再说一说判断的理由,然后让学生照
样子动手试着剪一剪。
四、课堂小结
师:通过今天的学习,同学们有哪些收获?
学生自由发言。
教师小结:这节课我们从生活中的对称现象认识了数学王国里的轴对
称图形,对称图形很美,请同学们利用图形对称美的特点来美化生活,
装扮这个美丽的世界吧!
板书设计:
如果把一个图形沿
轴对称图形 着一条直线对折,
飞机 爱心 两侧的图形能够完
对称轴 全重合,这个图形
就是轴对称图形。