钨极氩弧焊(TIG)
- 格式:ppt
- 大小:8.08 MB
- 文档页数:42
钨极氩弧焊(TIG焊)的焊接工艺参数
钨极氩弧焊简称为TIG焊,它使用熔点很高的纯钨或钨合金(钍钨、铈钨)作为不熔化电极的氩气保护焊,故也称不熔化极氩弧焊。
为了确保钨极氩弧焊的质量,必须对焊件与焊丝表面进行清理,去除金属表面的氧化膜、油污等杂质,否则在焊接过程中将会影响电弧的稳定性,产生气孔和未熔合等缺陷.焊接工艺参数如下;
1)钨极直径:
钨极直径主要根据焊件厚度选取.此外,在同等焊接条件下,选用不同的电流种类和极性,钨极电流许用值不同,采用的钨极直径也不同.如钨极直径选择不当,将造成电弧不稳、钨极烧损和焊缝夹钨现象;
2)焊接电流:
当钨极直径选定后,再选择合适的焊接电流.各种直径的钍(铈)钨极许用电流值见表1-001;
3)氩气流量:
氩气流量主要根据钨极直径和喷嘴直径来选取,通常在3~20L/min范围内;
4)焊接速度:
氩气保护层是柔性的,当遇到侧向风力或焊接速度过快时,则氩气气流会产生弯曲而偏离熔池,影响气体保护效果,而且焊接速度会影响焊缝成形,因此应选择合适的焊接速度;
5)工艺因素:
主要指喷嘴形状与直径、喷嘴至焊件的距离、钨极伸出长度、填充焊丝直径等.虽然这些工艺因索变化不大,但对气体保护效果和焊接过程有一定影响,应根据具体情况选择.通常喷嘴直径在5~20mm内选用;喷嘴至焊件的距离不超过15mm;钨极伸出喷嘴长度为3~4mm;填充焊丝直径根据焊件厚度选择。
TIG焊焊接工艺参数:
杨怡平
2011-6-19。
TIG焊(钨极氩弧焊)的原理、特点及应用钨极惰性气体保护焊是利用高熔点钨棒作为一个电极,以工件作为另一个电极,并利用氩气、氦气或氩氦混合气体作为保护介质的一种焊接方法。
我国通常只采用氩气做保护气,因此又称为钨极氩弧焊,简称TIG焊或CGTAW焊。
1、TIG焊的原理用难熔金属纯钨或活化钨(钍钨、铈钨)作为电极,用氩气来保护电极和电弧区及熔化金属的一种电弧焊方法,通常又称为钨极氩弧焊,其原理如下图所示。
▲钨极氩弧焊的工作原理1—钨极2—填充金属3—工件4—焊缝金属5—电弧6—喷嘴7—保护气体氩气属惰性气体,不溶于液态金属。
焊接时电弧在电极与焊件之间燃烧,氩气使金属熔池、熔滴及钨极端头与空气隔绝。
2、TIG焊的特点(1)优点①用难熔金属钝钨或活化钨制作的电极在焊接过程中不熔化。
利用氩气隔绝大气,防止了氧、氮、氢等气体对电弧及熔池的影响,被焊金属及焊丝的元素不易烧损(仅有极少数烧损)。
因此,容易保持恒定的电弧长度,焊接过程稳定,焊接质量好。
②焊接时可不用焊剂,焊缝表面无熔渣,便于观察熔池及焊缝成形,及时发现缺陷,在焊接过程中可采取适当措施来消除缺陷。
③钨极氩弧稳定性好,当焊接电流小于10A时电弧仍能稳定燃烧。
因此特别适合薄板焊接。
由于热源和填充焊丝分别控制,热量调节方便,使焊接热输入更容易控制。
因此,适于各种位置的焊接,也容易实现单面焊双面成形。
④氩气流对电弧有压缩作用,故热量较集中,熔池较小;由于氩气对近缝区的冷却,可使热影响区变窄,焊件变形量减小。
焊接接头组织紧密,综合力学性能较好;在焊接不锈钢时,焊缝的耐蚀性特别是抗晶间腐蚀性能较好。
⑤由于填充焊丝不通过焊接电流,所以不会产生因熔滴过渡造成的电弧电压和电流变化引起的飞溅现象,为获得光滑的焊缝表面提供了良好的条件。
钨极氩弧焊的电弧是明弧,焊接过程参数稳定,便于检测及控制,便于实现机械化和自动化焊接。
(2)缺点①钨极氩弧焊利用气体进行保护,抗侧向风的能力较差。
钨极惰性气体保护焊(TIG)一TIG焊的特点及应用•几个概念:钨极惰性气体保护电弧焊(tungsten inert-gas arc welding)使用纯钨或活化钨(钍钨、铈钨等)作为电极的惰性气体保护电弧焊,简称TIG 焊。
•背景:1930s,航空工业提出有色金属的焊接要求,而MMA和SAW不能很好地解决这个问题,为适应有色金属的焊接,钨极氩弧焊应运而生。
1、TIG焊的原理(如图)2、TIG焊的特点优点:(1)几乎可以焊接所有的金属或合金(2)焊接质量好(焊缝纯净、成形好、热影响区小)(3)适于薄板及打底/全位置焊(4)无飞溅缺点:焊接效率低、成本高;对焊前清理要求严格;需要特殊的引弧措施;紫外线强烈、臭氧浓度高;抗风能力差。
焊接过程动画3、TIG焊的应用材料:多用于有色金属及其合金厚度:多用于薄件(从生产效率考虑,以3mm 以下为宜)二TIG 焊的电流种类和极性1、直流TIG焊正接与反接焊接效果图实际很少采用电极载流能力弱、熔深小、钨极烧损严重、引弧困难有阴极清理作用反接(DCEP)用于大多数的焊接场合(除Al 、Mg 外)没有阴极理作用电极载流能力强、熔深大、钨极烧损少、引弧容易正接(DCEN)应用缺点优点极性钨极电流承载能力及阴极清理作用(阴极雾化作用)的机理反接(左),在电场作用下正离子高速撞击工件(氧化膜),使氧化膜破碎、分解而被清理掉。
正接右图,电子向工件运动,不能击碎氧化膜,没有清理作用。
但此时大量电子从钨极上发射,对钨极产生冷却作用,所以钨极烧损少、电流承载能力大。
大量电子从工件向钨极运动,把大量能量交给钨极,导致其温度升高而烧损。
(电流承载能力只有正接的1/10。
)2、交流TIG焊t应用:用于焊接铝、镁、铝青铜等合金(表面易氧化、氧化膜致密)。
正半周电极烧损降低,负半周获得阴极清理作用/熔深和钨极的电流承载能力介于DCEN 与DCEP 之间(左图)。
DCEN AC三TIG焊设备1、分类及组成组成:电源控制系统引/稳弧装置焊枪供气系统(水冷系统)(自动焊设备还应包括焊接小车和送丝装置)1)焊接电源直流电源、交流电源、交直流电源均采用陡降或垂直下降外特性。
不锈钢最常用的焊接方法不锈钢是一种耐腐蚀性能好、强度高的金属材料,广泛应用于制造行业。
但是,由于不锈钢的特殊性质,其焊接难度较高。
下面介绍一些不锈钢最常用的焊接方法。
1.TIG(钨极氩弧焊)焊接法:TIG焊接是目前不锈钢焊接中最常用的方法之一、它使用直流或交流电源,通过钨电极引导电弧,在氩气的保护下将不锈钢材料熔化,然后使用填料金属在熔池中填充形成焊缝。
这种焊接方法可以获得高质量的焊缝,焊接过程中热输入较小,可以减少不锈钢的变色、氧化等现象。
但是,TIG焊接速度较慢,对操作技术要求较高。
2.MIG(金属惰性气体保护焊)焊接法:MIG焊接是通过惰性气体(如氩气)的保护,在不锈钢和填充材料之间形成电弧,熔化材料并形成焊缝。
MIG焊接速度快,适合于较厚的不锈钢板材焊接,操作相对简单。
但是,由于气体保护,对焊接环境要求较高,同时也容易在焊接过程中产生气孔等缺陷。
3.电阻焊接法:电阻焊接是将不锈钢放置在两极电极之间,施加电流通过不锈钢产生热量使其熔化,然后加压压实形成焊缝。
电阻焊接速度快,适用于大批量的生产情况,焊接质量稳定。
但是,由于需要施加电流并且需要高温热量,焊接过程中易产生变色、氧化等现象。
4.长条电弧焊接法:长条电弧焊接是通过电极进行焊接的一种方法。
在不锈钢上引起电弧放电,使不锈钢熔化并形成焊缝。
长条电弧焊接适用于较大厚度的不锈钢板料焊接,可以适应较高的焊接速度,但是对操作技术要求较高,电弧稳定性较差。
5.激光焊接法:激光焊接是通过激光束的高能量使不锈钢迅速熔化并形成焊缝的一种方法。
激光焊接速度快,热影响区小,焊接质量高。
但是,激光设备价格昂贵,对操作人员要求较高,且焊接过程中需要严格的安全措施。
总之,不锈钢最常用的焊接方法包括TIG焊接、MIG焊接、电阻焊接、长条电弧焊接和激光焊接。
在选择焊接方法时,需根据具体工件的性质、要求、厚度等因素进行综合考虑,选择适合的焊接方法,以确保焊接质量和效率。
TIG操作规程引言概述:TIG操作规程是指钨极氩弧焊(Tungsten Inert Gas Welding)的操作规范和流程。
TIG焊接是一种常用的金属焊接方法,广泛应用于航空航天、汽车制造、电子设备等领域。
本文将详细介绍TIG操作规程的四个部分,包括设备准备、工件准备、焊接操作和后续处理。
一、设备准备:1.1 选择适当的TIG焊接机:根据焊接材料和焊接厚度选择合适的TIG焊接机。
不同焊接机有不同的功率和特性,确保选用的焊接机能够满足焊接要求。
1.2 准备氩气和气瓶:TIG焊接需要使用惰性气体(通常是氩气)作为保护气体。
确保气瓶中的氩气充足,并检查气瓶和气管的连接是否安全可靠。
1.3 准备其他辅助设备:包括焊接手套、焊接面罩、焊接钳等。
这些设备能够保护焊工的安全,并提供便利的操作环境。
二、工件准备:2.1 清洁工件表面:使用去油剂和刷子清洁工件表面,确保焊接区域没有油脂、灰尘或其他杂质。
这些杂质可能影响焊接质量。
2.2 加工工件边缘:根据焊接要求,对工件的边缘进行加工。
通常包括倒角、切割和修整等步骤,以便于焊接操作的进行。
2.3 定位和固定工件:使用夹具或其他固定装置,确保工件在焊接过程中保持稳定。
这可以避免焊接变形和偏移,提高焊接质量。
三、焊接操作:3.1 选择合适的钨极:根据焊接材料和焊接电流选择合适的钨极。
通常使用纯钨极或钨钴合金钨极,根据需求选择直径和形状。
3.2 设置焊接参数:根据焊接要求和材料厚度,设置合适的焊接电流、焊接速度和氩气流量。
这些参数的选择对焊接质量至关重要。
3.3 进行焊接:将钨极放在焊接位置,点亮氩弧,控制焊接电流和焊接速度,进行焊接操作。
焊接时要保持稳定的手部动作和适当的焊接角度。
四、后续处理:4.1 清洁焊接区域:焊接完成后,使用刷子和去油剂清洁焊接区域,去除焊渣和其他污物。
这可以提高焊接外观和质量。
4.2 进行焊缝检查:使用放大镜或其他检查工具检查焊缝的质量。
确保焊缝的密实性和均匀性,没有裂纹或气孔。
手工TIG焊(钨极氩弧焊)的操作要点1、焊枪的握法用右手握焊枪,食指和拇指夹住焊枪前身部位,其余三指触及工件支点,也可用食指或中指作支点。
呼吸要均匀,要稍微用力握住焊枪,保持焊枪的稳定,使焊接电弧稳定。
关键在于焊接过程中钨极与工件或焊丝不能形成短路。
2、引弧(1)高压脉冲发生器或高频振荡器进行非接触引弧,将焊枪倾斜,使喷嘴端部边缘与工件接触,使钨极稍微离开工件,并指向焊缝起焊部位,接通焊枪上的开关,气路开始输送氩气,相隔一定的时间(2~7s)后即可自动引弧,电弧引燃后提起焊枪,调整焊枪与工件间的夹角开始进行焊接。
(2)直接接触引弧,但需要引弧板(纯铜板或石墨板),在引弧板上稍微刮擦引燃电弧后再移到焊缝开始部位进行焊接,避免在始焊端头出现烧穿现象,此法适用于薄板焊接。
引弧前应提前5~10s送气。
3、填丝填丝方式和操作要点见下表。
填丝方式和操作要点填丝时,还必须注意以下几点:(1)必须等坡口两侧熔化后填丝填丝时,焊丝和焊件表面夹角15°左右,敏捷地从熔池前沿点进,随后撤回,如此反复。
(2)填丝要均匀,快慢适当送丝速度应与焊接速度相适应。
坡口间隙大于焊丝直径时,焊丝应随电弧做同步横向摆动。
4、左焊法或右焊法左焊法适用于薄件的焊接,焊枪从右向左移动,电弧指向未焊部分,有预热作用,焊速快、焊缝窄、熔池在高温停留时间短,有利于细化金属结晶。
焊丝位于电弧前方,操作容易掌握。
右焊法适用于厚件的焊接,焊枪从左向右移动,电弧指向已焊部分,有利于氩气保护焊缝表面不受高温氧化。
5、焊接(1)弧长(加填充丝)3~6mm。
钨极伸出喷嘴端部的长度一般为5~8mm。
钨极应尽量垂直焊件或焊件表面保持较大的夹角(70°~85°)。
喷嘴与焊件表面的距离不超过10mm。
(2)厚度大于4mm的薄板立焊时采用向下焊或向上焊均可,板厚4mm以上的焊件一般采用向上立焊。
(3)为使焊缝得到必要的宽度,焊枪除了做直线运动外,还可以做适当的横向摆动,但不宜跳动。
氩弧焊氩弧焊是用氩气作为保护气体的电弧焊方法。
氩气是一种惰性气体,它既不能与金属起化学反应,也不溶于液态金属。
氩弧焊的优点是保护性能好、焊缝质量高、焊接变形小和适用范围广,且特别适合于焊接铝、镁、钛及其合金,也广泛用于低合金高强钢,不锈钢、耐热钢的焊接。
氩弧焊通常可以分为钨极氩弧焊(TIG焊)、溶化极氩弧焊(MIG 焊)、脉冲氩弧焊三种。
而且,氩弧焊有手工、半自动和自动焊三种操作方式。
一、钨极氩弧焊钨极氩弧焊是采用高熔点的钨棒作为电极,用氩气作为保护气体的气电焊方法。
焊接时钨极本身是不溶化的,只能发射电子产生电弧的作用,为了防止钨极的溶化与烧损,所用的焊接电流受到限制,因此电弧功率较小,溶深也受到影响,只能适用于薄板的焊接。
1.钨极氩弧焊的焊接技术(1)钨极用于钨极氩弧焊的钨极主要有两种。
一种是钍钨极,钍是放射性元素,因此在磨削或使用的时候都应特别注意;另一种是铈钨极,它与钍钨极一样,能改善纯钨极的电子发射能力,由于铈钨极放射性小,因此在我国得到广泛的应用。
此外,还有纯钨极、镧钨极及锆钨极等。
钨极端部应修磨成平底锥形,锥顶直径d为钨极直径的1/3~1/4。
若锥顶过尖,钨极容易烧损;若过平则电弧漂浮不定。
为提高钨极的使用寿命,最好沿平行钨极长度的方向磨削(如削铅笔方法),并且将其表面用砂纸打光。
钨极的形状还与电流种类和大小有关,如图所示。
(2)氩气氩气是一种理想的惰性保护气体。
氩气瓶外表为灰色,容积为40L的氩气瓶可储存6m*m*m的氩气,满瓶压力为15mpa。
纯度为99.9%左右。
(3)焊丝钨极氩弧焊焊接用焊丝应符合有关国家标准。
2.“阴极破碎”作用氩弧焊时,氩气电离后形成大量正离子,并以高速向阴极移动。
当采用直流反接时,焊件是阴极,即氩的正离子流向焊件,它撞在金属熔池表面,能够将高熔点且又致密的氧化膜撞碎,使焊接过程顺利进行,这种现象称为“阴极破碎”作用。
而在直流正接时,没有“阴极破碎”作用,因为撞在焊件表面的是电子,电子的质量比离子的质量小得多。
钨极氩弧焊的名称解释钨极氩弧焊时常被称为TIG焊,是一种在非消耗性电极和工作物之间产生热量的电弧焊接方式;电极棒、溶池、电弧和工作物临近受热区域都是由气体状态的保护隔绝大气混入,此保护是由气体或混合气体流供应,通常是惰性气体,必须是能提供全保护,因为甚至很微量的空气混入也会污染焊道。
一适用性钨极氩弧焊,以人工或自动操作都适宜,且能用于持续焊接、间续焊接(有时称为‘跳焊’)和点焊,因为其电极棒是非消耗性的,故可不需加入熔填金属而仅熔合母材金属做焊接,然而对于个别的接头,依其需要也许需使用熔填金属。
钨极氩弧焊是一种全姿势位置焊接方式,且特别适于薄板的焊接—经常可薄至0.005英寸。
(一)焊接的金属钨极氩弧焊的特性使其能使用于大多数的金属和合金的焊接,可用钨极氩弧焊焊接的金属包括碳钢、合金钢、不锈钢、耐热合金、难熔金属、铝合金、镁合金、铍合金、铜合金、镍合金、钛合金和锆合金等等。
铅和锌很难用钨极氩弧焊方式焊接,这些金属的低熔点使焊接控制极端的困难,锌在1663F汽化,而此温度仍比电弧温度低很多,且由于锌的挥发而使焊道不良,表面镀铅、锡、锌、镉或铝的钢和其它在较高温度熔化的金属,可用电弧焊接,但需特殊的程序。
在镀层的金属中的焊道由于“交互合金”的结果。
很可能具有低的机械性质为防止在镀层的金属焊接中产生交互合金作用,必须将要焊接的区域的表面镀层移除,焊接后在修补。
(一)母材金属厚度钨极氩弧焊能应用于广泛厚度范围的金属焊接,此方式非常适合于焊接3mm厚以下物件,因为其电弧产生强烈的、集中热量,而产生高焊接速度,使用熔填金属能做多道焊接。
虽然6.25mm以上的厚度的母材金属,通常使用其他焊接方式。
但是,需高品质的厚焊件有使用钨极氩弧焊做多层焊接。
例如在8m直径的火箭发动器,15mm厚的外壳制造中,以钨极氩弧焊使用填充金属做纵向和圆周多道焊接,虽然对此厚的金属而言,此焊接方式较慢,但因为焊道的高品质要求,故而使用TIG焊接。
钨极氩弧焊熔池保护方式钨极氩弧焊(TIG焊)是一种常用的焊接方法,其熔池保护方式是通过氩气保护焊接区域,防止氧气和其他杂质进入,以确保焊接质量和强度。
本文将详细介绍钨极氩弧焊熔池保护方式的原理和优势。
钨极氩弧焊是一种非常精细的焊接方法,适用于各种金属材料,尤其是不锈钢、铝和钛等高温材料。
它使用一根钨电极和一个喷氩枪,通过高频电弧将工件和焊丝加热至熔化状态,形成熔池,然后通过喷氩枪喷出氩气,将熔池周围的空气隔离,以保护焊接区域免受氧气和其他污染物的侵害。
熔池保护是钨极氩弧焊的关键步骤之一。
氩气作为一种惰性气体,具有很强的抗化学反应性,能够有效地保护焊接区域,防止氧气和水蒸气的侵入,从而减少氧化和氢化等缺陷的产生。
氩气还能吹除焊接区域的熔渣和飞溅物,保持焊接缝的整洁和质量。
在钨极氩弧焊过程中,喷氩枪是起到熔池保护作用的关键工具。
喷氩枪上有一个氩气喷嘴,通过氩气源将氩气引入喷氩枪,然后通过喷嘴喷射出去。
氩气喷射出去后,会形成一个保护气罩,将焊接区域完全覆盖。
这个氩气保护罩不仅可以保护熔池,还可以将焊接区域冷却,防止过热和烧穿。
钨极氩弧焊的熔池保护方式有许多优势。
首先,氩气保护能够有效地防止氧气和水蒸气的侵入,减少焊接区域的氧化和氢化现象,从而提高焊接质量和强度。
其次,氩气保护还可以吹除焊接过程中产生的熔渣和飞溅物,保持焊接缝的整洁和美观。
此外,钨极氩弧焊还具有热输入小、熔深浅、焊缝形状美观等优点,适用于对焊接质量和外观要求较高的场合。
除了氩气保护,钨极氩弧焊的熔池保护还可以采用其他方法。
例如,在焊接过程中加入适量的保护剂,如氢化钙、氟化钠等,可以在焊接区域形成一层保护膜,防止氧气和其他污染物的侵害。
另外,还可以通过控制焊接电流和电弧的稳定性来保护熔池,以确保焊接质量和稳定性。
钨极氩弧焊的熔池保护方式是通过氩气保护焊接区域,防止氧气和其他杂质进入,以确保焊接质量和强度。
氩气保护能够有效地防止氧化和氢化等缺陷的产生,同时还能吹除焊接区域的熔渣和飞溅物,保持焊接缝的整洁和质量。