弯曲变形例题
- 格式:ppt
- 大小:1010.00 KB
- 文档页数:25
《材料力学》练习题(弯曲变形)
院系:年级:专业:
姓名:学号:成绩:
1、试用积分法求如图所示梁:
(1)挠曲线方程,并绘出挠曲线的大致形状;
(2)截面A处的挠度和截面B处的转角。
(EI为已知)
2、用积分法求图所示各梁的挠曲线方程、转角方程和B截面的转角、挠度。
(设EI=常数)
3、试用积分法求图中截面A 处的挠度和转角。
4、外伸梁受力如图所示,试用积分法求A θ、B θ及D y 、C y 。
(设EI =常数)
6、试用叠加法求如图所示简支梁C截面的挠度和两端的转角。
8、如图所示梁AB 的右端由拉杆BC 支承。
已知:4kN/m q =,2m l =,3m h =,梁的截面为边长200mm b =的正方形,材料的弹性模量110GPa E =;拉杆的横截面面积2250mm A =,材料的弹性模量2200GPa E =。
试求拉杆的伸长l ∆,以及梁的中点在竖直方向的位移。
材料力学弯曲变形
材料力学中的弯曲变形是指物体在受到外力作用下发生的一种变形形式。
当材料受到垂直于其长度方向的外力时,会产生弯矩,使得物体产生弯曲变形。
弯曲变形的原理可以通过材料力学中的悬臂梁模型进行解释。
在悬臂梁中,一个固定的端点支撑着一根梁,梁的另一端受到外力作用,使得梁产生弯曲。
在悬臂梁的弯曲变形中,梁上部的纤维受到拉力,而下部的纤维受到压力。
由于力的作用,纤维之间会相互滑动,从而产生弯曲变形。
弯曲变形可以通过材料的弹性性质进行描述。
弯曲变形的程度取决于材料的弯曲刚度,即弹性模量,以及外力的大小和作用点的位置。
与拉伸变形不同,弯曲变形的应变分布不是均匀的,而是随着离中轴线的距离而变化。
中轴线上的纤维经历的应变为零,而离中轴线较远的纤维经历的应变较大。
弯曲变形是材料工程中常见的一种变形形式,它在很多结构中都会发挥作用。
例如,在桥梁和楼板等结构中,弯曲变形可以帮助承受外部荷载并保持结构的稳定性。
在材料设计和工程应用中,科学家和工程师常常要考虑材料的弯曲性能,以确保结构的强度和稳定性。
弯曲变形典型习题解析1 试用积分法写出图示梁的挠曲轴方程,说明用什么条件决定方程中积分常数,画出挠曲轴大致形状。
图中C 为中间铰。
为已知。
I E解题分析:梁上中间铰处,左、右挠度相等,转角不相等。
解:设支反力为,如图示。
yB A yA FM F、、1、建立各段挠曲轴近似微分方程并积分 将梁分为AC 、CB 、BD 段。
AC 段 a x ≤≤10挠曲轴近似微分方程 11x FM w I E yA A ⋅−=′′转角方程1211'12C x Fx Mw IE yA A+−= (a) 挠度方程1113121162D x C x F x M w I E y A A ++−=(b)CB 段 )(2b a x a +≤≤挠曲轴近似微分方程2"2x FMw I E yA A ⋅−=转角方程 222222C x F xM w I E yA A+−=′(c)挠度方程2223222262D x C xFx M w I E yA A++−= (d)BD 段 l x b a ≤≤+3)(挠曲轴近似微分方程[])(333b a x Fx FM w I E yB yA A+−+−=′′转角方程[]32323332)(2C b a x F x F x M w I E yB yA A++−+−=′ (e) 挠度方程[]33333332336)(62D x C b a x FxFxM w I E yB yA A+++−+−= (f)2、确定积分常数共有6个积分常数。
需要6个位移边界条件和光滑连续条件。
332211D C D C D C 、、、、、题1图M A边界条件:,代入(b)得 01=x 01=w 01=D (g)0'1=w 代入(a)得 01=C(h)b a x +=2,02=w (i)连续条件: , a x x ==2121w w =(j) b a x x +==32, 32w w ′=′ (k) 32w w =(l)联立(i)、(j)、(k)、(l),可求出。
弯矩调幅法例题及详解
弯矩调幅法是一种用于解决结构中弯曲变形的方法。
下面是一个使用弯矩调幅法解决的例题及详解:
例题:
在一个梁上有两个集中力作用,分别是500N和800N,作用点分别距离梁的左端点3m和5m处。
梁的长度为10m,截面为矩形,宽度为20cm,高度为30cm。
求梁在中间支点处的弯矩值。
解法:
1. 首先确定梁的受力情况。
由题目可知,梁上有两个集中力作用,分别为500N和800N。
根据力的作用点和方向可知,500N的力作用在距离梁的左端点3m处,800N的力作用在距离梁的左端点5m处。
2. 确定梁的截面矩。
根据题目提供的梁的截面尺寸,可以计算出梁的截面面积A=0.2m * 0.3m = 0.06m^2。
梁的惯性矩
I=1/12 * (0.2m) * (0.3m)^3 = 0.0018m^4。
3. 计算力产生的弯曲矩。
根据弯矩调幅法的基本原理,梁上任意一点的弯曲矩M可以通过以下公式计算:
M = F * x
其中,F为作用力大小,x为作用力到该点的距离。
对于500N的力,弯曲矩M1 = 500N * 3m = 1500Nm;
对于800N的力,弯曲矩M2 = 800N * 5m = 4000Nm。
4. 计算支点处的弯曲矩。
根据梁的支持条件,支点处的弯曲矩应该为零。
因此,可以用中间支点处的弯曲矩M3表示为:
M3 = - (M1 + M2)
将M1和M2的值代入计算,得到M3 = - (1500Nm + 4000Nm) = -5500Nm。
因此,梁在中间支点处的弯曲矩为5500Nm。