11-4.5缓和曲线测设
- 格式:ppt
- 大小:451.50 KB
- 文档页数:18
缓和曲线的切线支距法和偏角法的计算公式和测设方法[教程]第九章道路工程测量(圆曲线缓和曲线计算公式)第九章道路工程测量(road engineering survey)重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法§9.1 交点转点转角及里程桩的测设一、道路工程测量概述分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。
(一)勘测设计测量(route reconnaissance and design survey)分为:初测(preliminary survey) 和定测(location survey)1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。
2、定测内容:在选定设计方案的路线上进行路线中线测量(center line survey) 、测纵断面图(profile) 、横断面图(cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。
(二)道路施工测量(road construction survey)按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。
本章主要论述中线测量和纵、横断面测量。
二、中线测量(center line survey)1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。
2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。
即测设直线上、圆曲线上或缓和曲线上中桩。
公路测量中缓和曲线的详细测设摘要:偏角法、切线支距法在公路缓和曲线中的坐标计算及现场详细测设。
关键词:缓和曲线,偏角法,切线支距法、一、缓和曲线的性质道路建设中,由于受地形或地质影响,经常需要改变线路方向,为满足行车要求,往往要用曲线把两条直线连接起来。
曲线的构成形式无外乎圆曲线和缓和曲线,缓和曲线是直线与圆曲线间的一种过渡曲线。
它与直线分界处半径为∞,与圆曲线相接处半径与圆曲线半径R 相等。
缓和曲线上任一点的曲率半径ρ与该点到曲线点的长度成反比,如图1: ρ∝l1 或ρl=C式中,C 是一个常数,称缓和曲线半径变更率。
当l =0l 时,ρ=R ,所以0Rl =C式中,0l 为缓和曲线总长。
ρl=C 是缓和曲线的必要条件,实用中能满足这一条件的曲线可以作为缓和曲线,如辐射螺旋线、三次抛物线等。
二、在直线和圆曲线间加入缓和曲线的方法:在直线和圆曲线间加入缓和曲线的方法是:原来的圆曲线半径保持不变,而向内侧移动,在垂直于切线方向上移动的距离为p ;整个曲线的起点和终点沿切线方向在圆曲线外延伸一段距离m ;原来圆曲线的两端长各为l 0/2的一段(圆心角为β0)均为缓和曲线所代替。
故缓和曲线大约有一半在原圆曲线范围内,而另一半在原直线范围内,缓和曲线终点的倾角β0圆曲线内移量p 和切线延伸量m 是确定缓和曲线的主要参数,称为缓和曲线的常数。
其计算公式为:β0=90 l 0/πR ;p= l 02/24R ;m= l 0/2- l 03/240R 2;其中R 和l 0为已知数据。
三、偏角法测设缓和曲线用偏角法测设缓和曲线时,将缓和曲线分为N等份,如图所示,每段曲线长k=l0/N。
一般线路设计中,缓和曲线长度为10m的整倍数,为测设方便,一般取k=10m,即每10m测设一点。
计算出各曲线点的偏角,然后在测站上安置经纬仪,依次拨角;同时用钢尺测设点间距离,定出缓和曲线上各分段点。
图中δ1、δ2、δ3、δ4、δ5、δn(=δ0),表示自ZH点出发的相应各点的偏角。
一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。
1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。
S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R,l h=s 则 l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ρ,a s=Δa/t≤0.62)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
βx=s2/2Rl h(2)缓和曲线的总切线角β=l h/2R.180/л2)缓和曲线直角坐标任意一点P处取一微分弧段ds,其所对应的中心角为dβxdx=dscosβxdy=dssinβx3)缓和曲线常数(1)主曲线的内移值p及切线增长值q内移值:p=Y h-R(1-cosβh)=l h2/24R切线增长值:q=X h-Rsinβh=l h/2-lh3/240R2(2)缓和曲线的总偏角及总弦长总偏角:βh=l h/2R总弦长:C h=l h-l h3/90R2O为圆曲线的圆心,圆曲线所对圆心角(等于公路偏角)。
一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。
1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。
S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R,l h=s 则 l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ρ,a s=Δa/t≤0.62)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
βx=s2/2Rl h(2)缓和曲线的总切线角β=l h/2R.180/л2)缓和曲线直角坐标任意一点P处取一微分弧段ds,其所对应的中心角为dβx dx=dscosβxdy=dssinβx3)缓和曲线常数(1)主曲线的内移值p及切线增长值q内移值:p=Y h-R(1-cosβh)=l h2/24R切线增长值:q=X h-Rsinβh=l h/2-lh3/240R2(2)缓和曲线的总偏角及总弦长总偏角:βh=l h/2R总弦长:C h=l h-l h3/90R2O为圆曲线的圆心,圆曲线所对圆心角(等于公路偏角)。
一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。
1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。
S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R,l h=s 则 l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ρ,a s=Δa/t≤0.62)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
βx=s2/2Rl h(2)缓和曲线的总切线角β=l h/2R.180/л2)缓和曲线直角坐标任意一点P处取一微分弧段ds,其所对应的中心角为dβx dx=dscosβxdy=dssinβx3)缓和曲线常数(1)主曲线的内移值p及切线增长值q内移值:p=Y h-R(1-cosβh)=l h2/24R切线增长值:q=X h-Rsinβh=l h/2-lh3/240R2(2)缓和曲线的总偏角及总弦长总偏角:βh=l h/2R总弦长:C h=l h-l h3/90R2O为圆曲线的圆心,圆曲线所对圆心角(等于公路偏角)。
当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设第四节圆曲线加缓和曲线及其主点测设§11—4圆曲线加缓和曲线及其主点测设一、缓和曲线的概念二、缓和曲线方程三、缓和曲线常数四、圆曲线加缓和曲线的综合要素及主点测设一、缓和曲线的概念1、为什麽要加入缓和曲线?(1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。
图11-10(a).(b)为采用外轨超高前、后的情况。
外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线.缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。
2、缓和曲线必要的前提条件(性质):在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为:ρ ∝1l 或ρ. l = C (11-4)式中: C 为常数,称曲线半径变更率。
当l= l o时,ρ= R ,按(11-4)式,应有C = ρ.l= R .l o (11-5)符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。
3、加入缓和曲线后的铁路曲线示意图(见图11-J)二、缓和曲线方程1、加入缓和曲线后的切线坐标系坐标原点:以直缓(ZH)点或缓直(HZ)点为原点;X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向;Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。
其中:x、y 为P点的坐标;x o、y o为HY点的坐标;ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长;2、缓和曲线方程式:根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:式中:l 为缓和曲线上任一点P 到直缓(ZH)点的曲线长;R 为圆曲线半径;l o为缓和曲线总长度。