旋转期末复习卷2
- 格式:doc
- 大小:803.00 KB
- 文档页数:4
新苏教版六年级下册期末总复习第二单元《图形与几何》测试卷(二)姓名: 班级: 得分:一、选择题(5分)1.时针从3:00到9:00是围绕钟面中心旋转了()。
A.360° B.180°C.90° D.60°2.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()。
A.长方形B.正方形C.正三角形 D.圆3.下列图形不是轴对称图形的是()。
A.扇形B.环形 C.平行四边形D.菱形4.一根长30cm、宽3cm的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,MA的长应为()。
A.7.5cm B.9cm C.12cm D.10. 5cm5.下列图中,每个大正方形都是由四个边长为1的小正方形组成,其中阴影面积不等于2的图形是()。
A.B.C.D.二、填空题(32分)6.图中共有______个三角形.7.一张长方形图片,长12厘米,宽9厘米.按1:3的比缩小后,新图片的长是(______)厘米,宽是(______)厘米,这张图片(______)不变,大小(______).8.长方形有(_____)条对称轴,正方形有(_____)条对称轴,圆有(_____)条对称轴,等边三角形有(____)条对称轴,半圆有(_____)条对称轴。
9.看图填一填。
(1)小帆船先向(______)平移了(______)格,再向(______)平移了(______)格.(2)三角形先向(______)平移了(______)格,再向(______)平移了(______)格.10.若一个角的余角比它的补角的还多1°,则这个角的大小是__________.11.如图,长方形ABCD长6cm,宽4cm,阴影部分甲和乙也是长方形。
已知甲的面积是△ABD面积的,那么乙的面积是(_______)。
12.图中多边形的周长是(________)厘米。
六年级下册数学期末专项复习二——图形与几何总分:100分+20分一、填一填。
(每空1分,共19分)1.过两点可以画( )条直线,过一点可以画( )条射线,过两点可以画( )条线段。
2.等腰梯形有( )条对称轴,等边三角形有( )条对称轴,圆有( )条对称轴,扇形有( )条对称轴。
3.一个三角形的面积是18cm 2,与它等底等高的平行四边形的面积是( )cm 2。
4.将一个圆柱沿着高剪开,展开侧面得到一个长方形。
这个长方形的长等于圆柱的( ),宽等于圆柱的( )。
5.一个圆环,外圆半径是6cm ,内圆半径是4cm ,圆环面积是( )cm 2。
6.两个圆的半径分别是3cm 和5cm ,它们周长的比是( ),面积的比是( )。
7.三角形的内角和是180°,四边形的内角和是( ),八边形的内角和是( )。
8.右图圆柱的表面积是( )cm 2,体积是( )cm 3。
9.一个圆维的体积是123cm 3,和它等底等高的圆柱的体积是( )cm 3。
10.一个立体图形从正面看是,从左面看是,从上面看到的图形是( )(画出图形)二、判一判。
(每题1分,共6分)1.一个三角形中,只要两个内角的度数和小于另一个内角,这个三角形一定是钝角三角形。
( )2.一条直线上的两,点把这条直线分成两条射线和一条线段,所以射线比直线短。
( )3.用棱长为1厘米的小正方体拼成一个大正方体,至少要4个小正方体。
( )4.圆锥的体积是与它等底等高的圆柱体积的13。
( )5.两个面积相等的三角形一定能拼成一个平行四边形。
( )6.把一个直角三角形绕其中一条直角边旋转一周形成的图形是圆锥。
( ) 三、选一选。
(每题1分,共5分)1.拉动一个活动的长方形框架,将它拉成一个平行四边形。
此时,平行四边形的面积与原来的长方形面积相比,( )。
A.平行四边形面积大 B.相等 C.平行四边形面积小 D.无法比较大小2.一个正方形的边长和圆的半径相等,已知正方形的面积是20m 2,则圆的面积是( )m 2。
青岛版五年级数学上册单元综合素质评价第二单元对称、平移与旋转一、填空。
(每空1 分,共15 分)1.我们学过的英文大写字母的形状有许多近似是轴对称的,请写出3 个:( )、( )、( )。
2.“天宫二号”发射时,火箭竖直升空的运动是( )现象;摩天轮的转动属于( )现象。
3.长方形有( )条对称轴,正方形有( )条对称轴,圆有( )条对称轴。
4.右图是2022 年北京冬奥会的会徽,会徽中的奥运五环图案是通过把基本图形( )得到的。
5.根据右图的钟面填空。
(1)分针从“12”绕点A顺时针旋转( )°到“2”。
(2)分针从“12”绕点A顺时针旋转90°到“( )”。
(3)分针从“1”绕点A顺时针旋转( )°到“6”。
(4)分针从“3”绕点A顺时针旋转30°到“( )”。
(5)分针从“( )”绕点A顺时针旋转60°到“7”。
(6)分针从“7”绕点A顺时针旋转( )°到“12”。
二、判断。
(对的在括号里打“√”,错的打“×”)(每题2 分,共10分)1.等腰三角形和平行四边形都是轴对称图形。
( ) 2.钟面上分针顺时针旋转360°,时间就走过了1 小时。
( ) 3.在图形的三种变换方式中,平移后得到的图形与原图形方向一致。
( ) 4.把连续平移就可以得到下图。
( ) 5.图形在镜子中看到的样子应该是。
( )三、选择。
(将正确答案的字母填在括号里)(每题2 分,共10 分) 1.轴对称图形的对称轴是一条( )。
A.射线B.直线C.线段D.虚线2.下列图案能经过旋转得到的是( )。
3.“羊”字象征着美好和吉祥,下列汉字都与“羊”字有关,其中形状是近似轴对称的汉字有( )个。
A.1 B.2 C.3 D.44.把“”连续三次逆时针旋转90°,得到的图形是( )。
5.观察下图,图形A 通过( )得到图形B。
A.先绕点O顺时针旋转90°,再向右平移10 格B.先绕点O逆时针旋转90°,再向右平移10 格C.先绕点O顺时针旋转90°,再向右平移8 格D.先绕点O逆时针旋转90°,再向右平移8 格四、辩一辩,认一认。
浙教版2023-2024学年八年级上册数学期末复习卷(2)一、选择题(本题有10小题,每小题4分,共40分)1.(4分)下列四个图形中,是轴对称图形的是 2.(4分)已知三角形的三边长分别为2、、10,若为正整数,则这样的三角形个数为 A.1B.2C.3D.43.(4分)下列说法中正确的是 A.使式子有意义的是B.使是正整数的最小整数是3C.若正方形的边长为,则面积为D.计算的结果是34.(4分)若点在一次函数的图象上,则点一定不在 A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)如图,,,添加下列哪一个条件可以推证 A.B.C.D.6.(4分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.40°B.45°C.47.5°D.50°7.(4分)关于的不等式只有2个正整数解,则的取值范围为 A.B.C.D.8.(4分)已知一次函数和且,这两个函数的图象可能是 9.(4分)如图,过点作轴的垂线交直线于点,过点作直线的垂线,交轴于点,过点作轴的垂线交直线于点,,这样依次下去,得到△,△,△,,其面积分别记为,,,,则为 A.B.C.D.10.(4分)如图,在中,,以的各边为边作三个正方形,点落在上,若,空白部分面积为10.5,则的长为 A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)命题“对顶角相等”的逆命题是 .12.(5分)一次函数中,随的增大而减小,则的取值范围是 .13.(5分)将点向左平移3个长度单位,再向上平移2个长度单位得到点,则点的坐标是 .14.(5分)已知一次函数的图象如图所示,则关于的不等式的解集为 .15.(5分)如图在中,,,将绕点按逆时针方向旋转角,得到△,设交边于,连结,若△是等腰三角形,则旋转角的度数为 .16.(5分)如图,在中,是边上的中点,连接,把沿翻折,得到,与交于点,连接,若,,则点到的距离为 .三、解答题(本题有8小题,共80分)17.(8分)解下面一元一次不等式组,并写出它的所有非负整数解..18.(8分)计算:(1);(2)已知,求的值.19.(8分)如图,已知中,,、是高,与相交于点(1)求证:;(2)若,求的度数.20.(10分)如图,在网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点、的坐标分别为,,并写出点的坐标为 ;(2)画出关于轴的对称图形△,并写出点的坐标;(3)在轴上求作一点,使的周长最小,并直接写出点的坐标.21.(10分)镇海制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天加工大米 吨,a= ;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好第二节车厢和第三节车厢都装满?22.(10分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.23.(12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形 勾股高三角形(请填写“是”或者“不是”;②如图1,已知为勾股高三角形,其中为勾股顶点,是边上的高.若,试求线段的长度.●深入探究如图2,已知为勾股高三角形,其中为勾股顶点且,是边上的高.试探究线段与的数量关系,并给予证明;●推广应用如图3,等腰为勾股高三角形,其中,为边上的高,过点向边引平行线与边交于点.若,试求线段的长度.24.(14分)如图(1),在平面直角坐标系中,直线交坐标轴于、两点,过点作交于,交轴于点.且.(1)求点坐标为 ;线段的长为 ;(2)确定直线解析式,求出点坐标;(3)如图2,点是线段上一动点(不与点、重合),交于点,连接.①点移动过程中,线段与数量关系是否不变,并证明;②当面积最小时,求点的坐标和面积.参考答案一、选择题(本题有10小题,每小题4分,共40分)1.选:.2.选:.3.选:.4.选:.5.选:.6.选:B.7.选:.8.选:.9.选:.10.选:.二、填空题(本题有6小题,每小题5分,共30分)11.答案为:相等的角为对顶角.12.答案是:.13.答案为:.14.答案为:.15.答案为:或.16.答案为:.三、解答题(本题有8小题,共80分)17.【解答】解:,解不等式①得;解不等式②得;原不等式组的解集为,原不等式组的所有非负整数解为0,1,2.18.【解答】解:(1);(2),,,,,.19.【解答】(1)证明:,,、是的两条高线,,在和中,,,;(2),,,.20.【解答】解:(1)所作图形如图所示:;(2)所作图形如图所示:;(3)所作的点如图所示,.故答案为:.21.【解答】解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入,,解得,∴y=35x﹣55;(3)由图2可知,当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55(吨),∴再加工2天装满第二节车厢和第三节车厢.22.【解答】解:(1),.与之间的函数关系式为.(3分)(2)由,,即可得,又为正整数,,4,5.(5分)故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(7分)(3)设此次销售利润为百元,.随的增大而减小,又,4,5当时,(百元)万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)23.【解答】解:●特例感知:①等腰直角三角形是勾股高三角形.故答案为是.②如图1中,根据勾股定理可得:,,于是,.●深入探究:如图2中,由可得:,而,,即;●推广应用:过点向引垂线,垂足为,“勾股高三角形”为等腰三角形,且,只能是,由上问可知①.又,②.而③,,.易知与均为等腰三角形,根据三线合一原理可知.又,,,.24.【解答】解:(1)直线交坐标轴于、两点,当时,,当时,,点的坐标为,点的坐标为,;故答案为:,3;(2)过点作交于,交轴于点.且,,,,点,,,点的坐标为,设过点,点的直线解析式为,,得,直线的解析式为,即直线的解析式为,由,得,即点的坐标为,;(3)①线段与数量关系是保持不变,证明:,,,,,,,,在和中,,,,即线段与数量关系是保持不变;②由①知,,面积是:,当取得最小值时,面积取得最小值,,,,,当时,取得最小值,,,解得,,面积取得最小值是:,当取得最小值时,设此时点的坐标为,,解得,,,点的坐标为,,由上可得,当面积最小时,点的坐标是,和面积是。
第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题1. 如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动. 此时斜面上摩擦力对物块的冲量的方向 (A) 是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下.(D) 沿斜面向上或向下均有可能. [ ]2. 如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π.(D) 0.[ ]3. 设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.二.计算题1. 矿砂从传送带A 落到另一传送带B (如图),其速度的大小v 1=4 m/s ,速度方向与竖直方向成30︒角,而传送带B 与水平成15︒角,其速度的大小v 2=2 m/s .如果传送带的运送量恒定,设为m q =2000 kg/h ,求矿砂作用在传送带B 上的力的大小和方向.θmmvR30°15°B1v 2vA§4.3 质点系动量守恒定律一. 选择题和填空题在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力) (A) 总动量守恒. (B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒. (C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°的方向运动,则球A 的速率为__________________________,方向为________________________________. 两块并排的木块A和B,质量分别为m 1和m 2 ,静止地放置在光滑一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为_________________________________,木块B 的速度大小为______________________.二.计算题1. 质量为M 的木块在光滑的固定斜面上,由A 点从静止开始下滑,当经过路程l 运动到B 点时,木块被一颗水平飞来的子弹射中,子弹立即陷入木块内.设子弹的质量为m ,速度为v,求子弹射中木块后,子弹与木块的共同速度.质量为M =1.5 kg 的物体,用一根长为l =1.25 m 今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小;(2) 子弹在穿透过程中所受的冲量.M 0v第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量3. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]4. 一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s ,再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述60转所需的时间Δt =________________.5. 一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了________________圈,飞轮再经______________的时间才能停止转动.6. 一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后, 物体停止了转动.物体的转动惯量J =__________.二.计算题§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题1. 图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则:(A) 2121ωω=. (B) ω 1 = ω 2.(C) 2132ωω=. (D) 213/2ωω=. [ ]3.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3. [ ](a)(b)二.计算题2.某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为m 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)§5.4 动量矩和动量矩守恒定律的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω 0. (B)ω 0.(C)21 ω 0. (D)041ω. [ ]上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为 前者的二倍.啮合后整个系统的角速度ω=__________________.6. 有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以ω1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度ω2=__________________________.二.计算题1m21v 0v2. 在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为R 21处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度ω0匀速转动,现在此人垂直圆盘半径相对于盘以速率v 沿与盘转动相反方向作圆周运动,如图所示. 已知圆盘对中心轴的转动惯量为221MR .求: (1) 圆盘对地的角速度. (2) 欲使圆盘对地静止,人应沿着R 21圆周对圆盘的速度v 的大小及方向?ω参考答案 第4章 冲量和动量§4.2质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ·s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q m t ∆,这时矿砂动量的增量为(参看附图) 图1分12v v vm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v2分设传送带作用在矿砂上的力为F,根据动量定理)(v m t F ∆=∆于是 N 2.213.98/)(==∆∆=m q t m F v2分方向:︒==︒∆2975θ,sin sin )(θm m 2v v 2分 由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分第4章 冲量和动量§4.3质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有30︒15︒θ1vm )(vm ∆ 2v m211m m t F +∆22211m t F m m t F ∆∆++V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v '2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第5章 刚体力学基础 动量矩 §5.2力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ·m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-= 当ω=0 时, rad 612.0220==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分(3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 2分 (2) M r =ml 2β / 12=-0.25 N ·m 2分a(3) θ10=ω 0t +21β t 2=75 rad 1分第5章 刚体力学基础 动量矩§5.3绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 21210 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分§5.4动量矩和动量矩守恒定律一.选择题和填空题1. (C)2. (B)3.(C)4.(D)5.031ω 6. ()212mR J mr J ++ω2mml 31l 32021vm7.()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(lm l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分。
2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)1.点A (-3,2)关于x 轴的对称点A ′的坐标为( )A .(-3,-2)B .(3,2)C .(3,-2)D .(2,-3)2.如图,在Rt △ABC 中,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF 的长为( )A .3B .4C .5D .3.在探究“尺规三等分角”这个数学名题中,利用了如图,该图中,四边形ABCD 是矩形,线段AC 绕点A 逆时针旋转得到线段AF ,CF 、BA 的延长线交于点E ,若∠E =∠F AE ,∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .34°4.通过平移得到的新图形中的每一点与原图形中的对应点的连线( )A .平行B .相等C .共线D .平行(或共线)且相等5.平移前后两个图形是图形,对应点连线( )A .平行但不相等B .不平行也不相等C .平行且相等D .不相等6.如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则EF 的长为A .74B .95C .1910 D是( )A .将原图形向x 轴的正方向平移了1个单位;B .将原图形向x 轴的负方向平移了1个单位C .将原图形向y 轴的正方向平移了1个单位D .将原图形向y 轴的负方向平移了1个单位8.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为 ( )A .30°或50°B .30°或60°C .40°或50°D .40°或60° 9.下列各图中,是中心对称图案的是( )A .B .C .D .10.将一个等边三角形绕着它的中心旋转一个角度后与原来的图形完全重合,那么这个角度至少应为( )度.A .60B .90C .120D .15011.如图所示,把△ABC 沿直线DE 翻折后得到△'A DE ,如果∠A =45°,∠'A EC =25°,那么∠'A DB 的度数为_______.12.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (3,﹣2),点B (5,﹣8)平移到点D ,则点D 的坐标是_____.13.已知一个点的坐标是()3,2-,则这个点关于坐标原点对称的点的坐标是________. 14.如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是_____.(不许重合、折叠)A向左平移一个单位得到点A',则点A'的坐标为15.在平面直角坐标系中,把点(2,3)__________.16.(2017四川省广元市)在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为______.17.如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________.18.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为_____.19.在26个大写英文字母中,有许多字母是轴对称图形,请你把其中是轴对称图形的字母写出来________________(不少于5个).20.如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.21.如图,△ABC,∠C=90°,将△ABC绕点B逆时针旋转90°,点A、C旋转后的对应点为A′、C′.(1)画出旋转后的△A′BC′;(2)若AC=3,BC=4,求C′C的长;(3)求出在△ABC旋转的过程中,点A经过的路径长.(结果保留π)22.如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形. (2)已知BE=2cm,DF=3cm,求EF的长.23.如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知△ABC,(1)△ABC与△A1B1C1关于原点O对称,写出△A1B1C1各顶点的坐标,画出△A1B1C1;(2)以O为旋转中心将△ABC顺时针旋转90°得△A2B2C2,画出△A2B2C2并写出△A2B2C2各顶点的坐标.24.玩过“俄罗斯方块”游戏吗?(出现的图案可进行顺时针、逆时针旋转;向左、向右平移).已拼好的图案如图所示.(1)若落下①—④中的一枚方块能将原图形拼成轴对称图形,请在图中画出可能摆放位置(一种即可).(2)若先后落下①—④中的两枚方块(不重复出现)能将原图形拼成矩形,求形成矩形的概率(要求树状图或者列表).25.综合与实践问题情境在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.操作发现(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是.(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.拓展探索(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.26.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A,B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1.27.现有如图1所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图2).(要求:分别在图3、图4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形),它28.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个ABC的三个顶点均与小正方形的顶点重合.(1)将△ABC向左平移4个单位长度,得到△DEF(A与D,B与E,C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和AF,请计算△AEF的面积S.参考答案1.A【解析】【分析】根据关于x轴对称点的性质“横坐标不变,纵坐标互为相反数”,即可得出答案.【详解】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.2.C【解析】试题解析:如图所示:过点F作FG⊥AC.∵由旋转的性质可知:CE=BC=4,CD=AC=6,∠ECD=∠BCA=90°.∴AE=AC-CE=2.∵FG⊥AC,CD⊥AC,∴FG∥CD.又∵F是ED的中点,∴G是CE的中点,∴EG=2,FG=12CD=3.∴AG=AE+EG=4.∴.故选C.3.C【解析】【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.【详解】解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选C.【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形,三角形的角的相关知识是解决问题的关键.4.D【解析】试题解析:平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.平移不改变图形的形状和大小. 平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等.故选D.5.C【解析】试题解析:平移前后两个图形是全等图形,对应点连线平行且相等.故选C.6.A【解析】分析: 连接BE ,BD ,如图,利用菱形的性质得△BDC 为等边三角形,在Rt △BCE 中计算出BE 接着证明BE ⊥AB , 利用折叠的性质得到EF =AF .,设EF =AF =x , FG 垂直平分AE ,所以在Rt △BEF 中利用勾股定理列方程求解即可.详解: 连接BE ,BD ,如图,∵四边形ABCD 为菱形,∠A =60°,∴△BDC 为等边三角形, ∠C =∠A =60°,∴∠CBE =90°-60°=30°.∵E 点为CD 的中点,∴CE =DE =1,BE ⊥CD .在Rt △BCE 中,BC =2CE =2,BE =.∵AB ∥CD ,∴BE ⊥AB .∵菱形纸片翻折,使点A 落在CD 的中点E 处,∴EF =AF .设EF =AF =x ,则BF =2-x ,在Rt △BEF 中, ()2222x x -+=, 解得7x x=. 故选A.点睛:本题考查了菱形的性质,等边三角形的判定与性质,含30°的直角三角形的性质,折叠的性质,勾股定理,求出BE 的长并能利用Rt △BEF 的三条边列方程是解答本题的关键. 7.B【解析】∵将△ABC的三个顶点的横坐标都加上−1,纵坐标不变,∴所得图形与原图形的位置关系是△ABC向x轴的负方向平移1个单位。
一、填空题:(20分每空1分)1、感应电机有三种运行状态,分别为 、 和 。
2、一台隐极式同步发电机,若气隙加大,则同步电抗 ,短路比 ,发电机的稳定性 。
3、一台三相感应电动机,额定转速为1450r/min ,此时转子旋转磁动势相对于定子旋转磁动势的转速为 ,定子旋转磁动势相对于转子的转速为 ,转子旋转磁动势相对于转子的转速 。
4、一台三相感应电动机,若采用星—三角起动,则起动电流为全压起动时的 倍,起动转矩变为全压起动时的 倍。
5、单相绕组通入交流电流所产生的磁动势为 ,其基波磁动势的幅值为 。
6、在谐波磁场中,谐波次数为 次的谐波为齿谐波,消除齿谐波的最有效方法是 。
7、并网运行的同步发电机过励时,直轴电枢反应F ad 的性质为 磁。
8、三相同步电动机接至电网上,原来运行在正常励磁状态,若仅减小励磁电流,保持输出有功保持不变,则电动机在 (过励或欠励)状态下运行,电动机将吸收 (超前或滞后)的无功功率。
9、三相绕线式感应电动机转子电阻R 2=0.25Ω,当带恒转矩负载运行于2960r/min ,若要将转子转速降低为2000r/min, 应在在转子电路中串入电阻阻值为 Ω,运行稳定后电机定子电流 。
(变大、变小、不变)二、选择题:(15分每空1分)1、两相对称绕组中,通入两相对称交流电流其合成基波磁动势为( ),三相对称绕组中通入不对称三相电流时其合成基波磁动势为( )。
A. 圆形旋转磁动势B. 脉振磁动势C. 椭圆形旋转磁动势2、三相感应电动机在恒转矩变频调速时,电机的最大电磁转矩随频率升高而( );在恒功率变频调速时电机最大电磁转矩随频率升高而( )。
A. 下降 B. 不变 C. 上升3、一台同步发电机额定负载时增加励磁,则电磁功率( ),功率角( ),整步功率系数δd dP e( )。
A. 上升 B. 下降 C. 不变4、同步电动机的负载减少时,其转速( ),功率角( )。
A. 上升 B. 下降 C . 不变5、一台并网运行的同步发电机输出功率增加时,则电磁功率( ),功率角( )。
五年级数学下册期末考试卷及答案2(时间:60分钟 分数:100分)班级: 姓名: 分数:一、填空题。
(每题2分,共20分)1、三个连续奇数的和是177,这三个数的平均数是( ),其中最大的数是( )。
2、分母是8的最简真分数有( )个,它们的和是( ).3、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )。
4、小明今年a 岁,爸爸的年龄比他的3倍大b 岁,爸爸今年( )岁.5、有8盒饼干,其中7盒质量相同,另有一盒少了2块.如果用天平称,至少称( )次才可以保证找到这盒饼干.6、有9袋糖果,其中有一袋忘了放防潮剂,如果用没有砝码的天平称,至少要称( )次才能保证找出这袋糖果。
7、260000000平方米=( )公顷=( )平方千米80平方千米=( )公顷=( )平方米8、填出下面小数。
)()(15)(2416)(83==÷==(填小数)9、某数除以5余3,除以6余4,除以7余5,这个自然数最小是( ).10、2.48×0.9的积有( )位小数;0.126×1.7的积有( )位小数.二、判断题(对的打“√”,错的打“×”。
每题2分,共10分)1、所有的奇数都是质数。
( )2、两个因数的积一定大于任何一个因数。
( )3、等式都是方程。
( )4、两个自然数的积一定是合数。
( )5、方程一定是等式,等式也一定是方程。
()三、选择题。
(每题1分,共5分)1、从一张长10米,宽8米的长方形纸上剪一个最大的正方形,剩下图形的面积是()A.80平方米B.64平方米C.16平方米2、王强今年a岁,卫东今年(a﹣3)岁,再过c年,他们的年龄相差()岁.A.3 B.c C.c+3 D.c﹣33、下列图形中,不是轴对称图形的是()A.线段B.平行四边形C.等腰三角形4、50以内的自然数中,最小质数与最大质数的积是()。