量子物理第3讲——薛定谔方程 定态薛定谔方程 一维无限深势阱 一维有限高势垒
- 格式:ppt
- 大小:2.91 MB
- 文档页数:21
6.ξ一维无限深势阱考虑一维空间中运动的粒子,它的势能在一定区域内:0,,x x a U x a⎧<⎪=⎨∞≥⎪⎩ 如右图这种势叫一维无限深势阱因x U 不含 t ,属于定态问题。
体系所满足的定态薛定谔方程是:()2222d E x a dx ψψμ-=<① ()22022d U E x a dx ψψψμ-+=≥② ②中,0U →∞由波函数应满足的连续性和有限性条件,只有当ψ=0时,②式才能成立,所以,有:ψ=0,x a ≥现求解①式,改写为:2221222222020sin cos ,d E dxE d x a dx A x B x x aψψμψμααψψαα+=⎛⎫=+=< ⎪⎝⎭=+<令:则:,其解为: (本身上方说的解可表为如下振荡函数形式:sin x α,cos ,i x x e αα±,但因现在势阱具有空间反射不变性,()()x x U U -=能量本征函数必定有确定的宇称曾书——P49——所以,只能取sin x α,或cos x α的形式。
根据ψ的连续性,因②式得ψ=0,x a ≥,于是:,sin cos 0sin cos 0sin 0cos 0x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得: 因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。
(物理问题对ψ的要求)所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5.......2n a n απ==对第⑵组解有:,2,4,6 (2)n a n απ== 合并,即有:,1,2,3,4,5 (2)n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2n a απ=代回1222E μα⎛⎫= ⎪⎝⎭,得体系的能量本征值为:2222,8n n E n a πμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。
量子力学中的无限深势阱问题量子力学是描述微观世界的物理学理论,它在解释和预测微观粒子行为方面具有重要的作用。
其中,无限深势阱问题是量子力学中的一个经典问题,它帮助我们理解波函数的性质以及粒子在势场中的行为。
无限深势阱问题是指一个粒子被限制在一个势能在某个区域内为无限大,在区域外为零的势场中运动。
这个问题可以用一维的情况来描述,假设势阱的宽度为L,那么势阱内的势能函数可以表示为:V(x) = 0, 0 < x < LV(x) = ∞, x < 0 或者 x > L在经典力学中,粒子在势场中的运动是由牛顿第二定律描述的,而在量子力学中,粒子的运动状态由波函数来描述。
波函数是量子力学中的基本概念,它是一个复数函数,可以用来描述粒子的位置和动量。
对于无限深势阱问题,我们可以使用定态薛定谔方程来求解。
定态薛定谔方程可以表示为:-ħ²/2m * d²ψ(x)/dx² + V(x)ψ(x) = Eψ(x)其中ħ是普朗克常数的约化形式,m是粒子的质量,E是粒子的能量,ψ(x)是粒子的波函数。
在势阱内部,势能V(x)为零,因此定态薛定谔方程可以简化为:-ħ²/2m * d²ψ(x)/dx² = Eψ(x)这是一个简化的定态薛定谔方程,可以通过求解这个方程来得到粒子在势阱内部的波函数。
根据边界条件,当x=0或者x=L时,势能V(x)为无穷大,因此波函数必须为零。
这意味着在势阱的两个边界处,波函数的值为零。
根据上述条件,我们可以得到波函数的一般形式为:ψ(x) = A * sin(kx)其中A是归一化常数,k是波数,可以通过边界条件来确定。
当x=0时,波函数为零,因此有sin(0) = 0,这意味着kx = 0,即k = 0。
当x=L时,波函数为零,因此有sin(kL) = 0,这意味着kL = nπ,其中n是一个整数。
通过边界条件,我们可以得到k的取值为:k = nπ/L由于波函数必须是归一化的,我们可以通过归一化条件来确定归一化常数A。
量子力学专题三:一维势场中的粒子一、一维薛定谔方程边界条件和处理办法(熟练掌握)1、边界条件:A、束缚态边界条件:在无穷远处,找到粒子的概率为零,相应的波函数的值应该趋近于零;B、连续性边条件:a、波函数连续;b、波函数的一阶偏导数连续。
(注意:不一定同时成立!!)C、周期性边界条件:在求解角动量l分量的本征函数时,利用周期性边界条件可以确z定本征函数的归一化常数;在求解转子的能量本征函数时,亦可以利用周期性边界条件来确定其归一化常数。
2、处理方法:A、列出不同区间的能量本征方程,并对其进行求解;B、根据束缚态边条件,选择适合的解;C、根据连续性边条件,对得到的波函数进行归一化处理;D、写出本征函数和对应的能量本征值。
二、一维方势阱:1、一维无限深方势阱的求解方法及其物理讨论(熟练掌握) A 、非对称势阱: a 、解题步骤:(1)写出各个区间的能量本行方程; (2)根据写出的微分方程,求出其通解;(3)根据连续性边界条件,确定其相位及其能量本征值的取值; (4)根据概率诠释,对波函数进行归一化处理,确定待定常数; (5)写出能量本征方程和对应的能量本征值。
b 、具体过程:)0(),0(0)(a x a x x x V <<><⎩⎨⎧∞=(1)列出不同区间的能量本征方程,并对其进行求解; 在0<x 和a x >区间,波函数为:0)(≡x ψ在ax <<0区间,能量本征方程为:)()(2222x E x dxdm ψψ=-对其变形,得2=+''ψψk其中,mE k2=(0>E )。
解得: )sin()(δψ+=kx A x(2)根据束缚态边条件,选择适合的解;此处的束缚态边条件,即粒子在无穷远处出现的概率为零,在求解本征方程——在0<x 和a x >区间,波函数为:0)(≡x ψ——时已经应用了!(3)根据连续性边条件,对得到的波函数进行归一化处理;在0=x 处,波函数连续,有0sin )0(==δψA ,则有0=δ。
一维无限深势阱薛定谔方程求解一维无限深势阱是量子力学中最经典的问题之一,其求解对于理解基本的量子力学原理以及波函数的性质具有重要的意义。
薛定谔方程是描述量子力学体系中粒子的行为的基本方程,通过求解薛定谔方程,我们可以获得系统的波函数及其相应的能级。
让我们来考虑一个无限深势阱,这个系统可以简单地用一个势能函数来描述。
在这个系统中,粒子只能在一个有限的空间区域内运动,而且势能在这个区域内是常数为零的。
首先,我们需要写出薛定谔方程。
对于一维情况,薛定谔方程可以写成:-ħ²/2m * d²ψ(x)/dx²+ V(x)ψ(x) = Eψ(x)。
其中,ψ(x)是系统的波函数,V(x)是势能函数,E是波函数对应的能量。
对于无限深势阱,势能函数在阱内为零,在阱外为无穷大。
因此,V(x)在阱外的值可以视为一个很大的正数。
接下来,我们需要考虑边界条件。
在无限深势阱中,粒子是被约束在一个有限空间内的。
因此,在边界处,粒子的波函数必须为零。
对于一个无限深势阱,边界条件可以写为ψ(0)=ψ(a)=0,其中,a是阱的宽度。
现在,让我们尝试求解薛定谔方程。
由于系统的势能在阱内为零,薛定谔方程可以简化为:-d²ψ(x)/dx² = k²ψ(x),其中,k=√(2mE/ħ²)。
这是一个常微分方程,我们可以通过分离变量和积分来求解。
假设ψ(x)可以分解为两个函数的乘积:ψ(x) = X(x)Y(y)。
将这个假设代入方程中,并整理得:1/X(x) * d²X(x)/dx² = -1/Y(y) * dY(y)/dy = -k²。
我们可以分别对X(x)和Y(y)进行求解,然后将两个解再组合起来得到系统的波函数。
针对常微分方程1/X(x) * d²X(x)/dx² = -k²,我们可以得到其解为X(x) = Asin(kx) + Bcos(kx),其中,A和B是常数。
第三章: 一维定态问题[1]对于无限深势阱中运动的粒子(见图3-1)证明2a x = )()(22226112πn a x x -=-并证明当∞→n 时上述结果与经典结论一致。
[解]写出归一化波函数:()axn a x n πsin2=ψ (1) 先计算坐标平均值:xdx axn a xdx a x n a xdx x a aa)(⎰⎰⎰-==ψ=02022cos 11sin 2ππ利用公式:2sin cos sin ppxp px x pxdx x +-=⎰ (2) 得2cos sin cos ppxp px x pxdx x +-=⎰ (3) 22cos 22sin 221022aa x n n a a x n x n a x a x a=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππ 计算均方根值用()x x x x x ,)(222-=-以知,可计算2xdx ax n x a dx a x n x a dx x x a a)(⎰⎰⎰-==ψ=022222022cos 11sin 2ππ利用公式px ppx x p px x p pxdx x sin 1cos 2sin 1cos 3222-+=⎰ (5) aa x n x n a a x n n a x n a x a x 0222222cos222sin 22311πππππ⋅⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=222223πn a a -= ()22222222223⎪⎭⎫ ⎝⎛--=-=-a n a a x x x x π)(2222212πn a a -=(6) 在经典力学的一维无限深势阱问题中,因粒子局限在(0,a )范围中运动,各点的几率密度看作相同,由于总几率是1,几率密度a1=ω。
210a xdx a xdx x aa ===⎰⎰ω 312202a dx x a x a==⎰()22222222223⎪⎭⎫⎝⎛--=-=-a n a a x x x x π)(故当∞→n 时二者相一致。