7化工工艺学烃类选择性氧化过程
- 格式:ppt
- 大小:2.77 MB
- 文档页数:99
第七节选择性催化氧化一、烃类晶格氧选择性催化氧化概念烃类的选择性催化氧化,在工业上一般以氧气或空气为氧化剂,催化剂多为可变价过渡金属复合氧化物。
就反应机理而言,大多符合Redox机理,它包括两个主要的过程:①气相的烃分子与高价态金属氧化物催化剂表面上的晶格氧(或吸附氧)作用,烃分子被氧化为目的产物,晶格氧参与反应后,催化剂的金属氧化物被还原为较低价态;②气相氧将低价金属氧化物氧化到初始高价态,补充晶格氧,完成Redox循环。
按Mars和Van Krevenlen提出的Redox模型,选择氧化反应:C n H m+O2→C n H m-2+H2O (1)可写成两个基元反应:C n H m+2OM→C n H m -2O+H2O+2M (2)2M+O2→2OM (3)式中,M——低价态的活性位;OM——有晶格氧的活性位。
但是总反应(1)的速率,实际上是受两个基元反应(2)和(3)中速率较慢的反应所控制。
在通常情况下,催化剂被烃分子还原的反应(2)是慢步骤。
烃类催化氧化反应动力学的研究结果表明,副反应对氧气的反应级数比主反应对氧气的反应级数高,所以提高氧分压通常不能有效增加反应(1)的速率,反而会导致选择性下降。
这是因为提高气相氧分压,一方面会增加与气相氧出于平衡的可逆吸附氧物种(如O2-、O22-、或O-)的表面浓度,这种高活性的可逆吸附氧物种,一般认为主要参与非选择性氧化反应;另一方面对于高温(>900K)的烃类氧化过程表面催化反应外,还伴随有气相自由基反应发生,气相氧的存在也会加快气相深度氧化反应,导致选择性下降。
为了避免气相氧对烃类分子的深度氧化,提高目的产物的选择性,人们在不断改进催化剂性能的同时,尝试了采用催化剂晶格氧作为氧源的反应新工艺。
该工艺按Redox 模型将烃分子与氧气或空气分开进行反应,以便从根本上排除气相深度氧化反应。
目前有两种反应工艺可用于烃类晶格氧选择氧化,一种是膜反应器,另一种是循环流化床。