圆和扇形-阴影面积的计算
- 格式:wps
- 大小:110.90 KB
- 文档页数:4
扇形阴影部分面积题型
扇形阴影部分面积的题型是数学中常见的问题,主要涉及到扇形的面积计算和几何图形的组合。
首先,我们需要了解扇形面积的计算公式。
扇形面积的计算公式是:
扇形面积= (θ/360) × π × r^2其中,θ是扇形的圆心角,r是扇形的半径。
对于扇形阴影部分面积的题型,通常会涉及到两个或多个扇形的组合,以及与其他几何图形(如矩形、三角形等)的结合。
解题时,我们需要根据题目的具体条件,分析各个扇形之间的关系,并利用扇形面积的计算公式进行计算。
例如,一个常见的题型是求一个半圆内切一个正方形,正方形的一个顶点位于半圆的圆心,另一个顶点在半圆上,求正方形和半圆之间的阴影部分面积。
这种题型需要我们利用正方形的性质和半圆的性质,通过几何推理和计算得出阴影部分的面积。
总的来说,扇形阴影部分面积的题型需要我们具备一定的几何知识和推理能力,通过分析几何图形的性质和关系,利用扇形面积的计算公式进行计算。
辅导材料:与圆有关的阴影面积的计算准备阶段:1.圆的面积公式: π=S 2r .其中r 为圆的半径.2.半圆的面积公式: π21=半圆S 2r . 3.扇形的面积公式: ︒⋅=3602r n S π扇形.其中r 为扇形的半径,n 为扇形的半径. 4.扇形的面积公式(另): lr S 21=扇形.其中r 为扇形的半径,l 为扇形的弧长. 证明: ∵︒⋅=3602r n S π扇形,︒⋅=180r n l π ∴lr r r n r n S 21180213602=⋅⋅⋅=⋅=︒︒ππ扇形.5.关于旋转:(1)复习旋转的性质.(2)会画出一个图形旋转后的图形.(3)旋转的作用: 通过旋转,有时候我们可以把分散的几何条件集中起来,使题目呈现出整体上的特点.该作用也常用于与圆有关的阴影面积的计算. 6.重点介绍: 转化思想在解决数学问题时,把复杂问题简单化,把一般问题特殊化,把抽象问题具体化等的思想方法,叫做转化思想. 7.怎样求与圆有关的阴影的面积?(1)利用圆、半圆以及扇形的面积计算公式. (2)利用整体与部分之间的关系.(3)采用整体思想 求不规则图形的面积,一般将其转化为规则图形的和差来解决,具体可以通过平移、旋转或割补的形式进行转化.实战阶段:★1.(2015.河南)如图(1)所示,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交弧AB 于点E.以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D.若OA=2,则阴影部分的面积为__________.图(1)EDBCAO图(1)解析: 图(1)中阴影所在图形为不规则图形,可以利用整体与部分之间的关系的方法求解,即采用整体和差的方法.解:连结OE. ∴OA=OB=OE ∵CE ⊥OA∴△COE 为直角三角形 ∵点C 为OA 的中点∴12121===OE OA OC∴在Rt △COE 中, ∠CEO=30° ∴∠EOC=60° ∵∠AOB=90° ∴∠BOE=30°在Rt △COE 中,由勾股定理得:3122222=-=-=OC OE CEOCD OBE COE S S S S 扇形扇形阴影-+=∆1223360190360230312122πππ+=⨯⨯-⨯⨯+⨯⨯=︒︒︒︒★2.(2015.贵州遵义)如图(2)所示,在圆心角为90°的扇形OAB 中,半径OA=2 cm,C 为弧AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积是__________.图(2)CADEOBM解:连结OC,并作CM ⊥OA 于点M. ∵点C 为弧AB 的中点, ∠AOB=90°∴∠AOC=∠BOC=21∠AOB=45°∴△COM 为等腰直角三角形 ∴OM=CM ∵OC=2cm∴CM=OC 222245sin =⨯=⋅︒cm ∵D 、E 分别是OA 、OB 的中点 ∴OD=OE=1 cm∴DM=OM -OD=)12(-cmDOECDM COM OBC S S S S S ∆∆∆--+=扇形阴影 21221122122212-+-+=---+=ππ)21222(-+=πcm 2. 注意: 若题目对结果无特殊要求,则结果保留π,不取具体值.★3.(2015.开封二模)如图(3)所示,在△ABC 中,CA=CB,∠ACB=90°,AB=2.点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF,点C 恰好在弧EF 上,则图中阴影部分的面积为_____ __________.解析: 本题问题的解决要用到三角形全等的知识,请复习:(1)三角形全等的判定定理有哪些? (2)全等三角形具有怎样的性质? 对于第二个问题,全等三角形的面积相等,我们可以借助该性质将三角形的面积等量转化.图(3)解:连结CD.设DE 与AC 交于点M,DF 与BC 交于点N.∵∠ACB=90° ∴∠CDE +∠1=90° ∵CA=CB,点D 为AB 的中点 ∴CD ⊥AB (等腰三角形“三线合一”) ∴∠CDE +∠2=90° ∴∠1=∠2∴∠DCN=∠21ACB=45°∴∠DAM=∠DCN ∵∠ACB=90°∴121===AD AB CD∴DE=CD=1在△ADM 和△CDN 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠12CD AD DCNDAM ∴△ADM ≌△CDN(ASA) ∴S △ADM =S △CDN∵S 四边形DMCN =S △CDM +S △DCN S △ACD =S △CDM +S △ADM ∴S 四边形DMCN = S △ACD ∴DMCN DEF S S S 四边形扇形阴影-=2142113601902-=⨯⨯⨯=-=︒︒∆ππ—扇形ACDDEF S S在求扇形的面积时确定圆心角的度数很重要大多数扇形的圆心角题目会直接给出,但有时却需要我们自己求解.见第★5题.★4.(2015.洛阳一模)如图(4)所示,在扇形OAB 中,∠AOB=90°,半径OA=6.将扇形AOB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D处,折痕交OA 于点C,则图中阴影部分的面积为__________.图(4)解析: 本题,BOC OAB S S S ∆-=2扇形阴影,题目所给条件不难求出扇形OAB 的面积,但△BOC 的面积不易求得.如果连结OD,那么OB=OD,再根据对折,得OB=BD,从而OB=OD=BD,即△BOD 为等边三角形.至此,问题便很容易解决.解: 连结OD.∴OB=OD∵△BOC ≌△BDC (由翻折可得) ∴OB=BD,∠OBC =∠DBC∴OB=OD=BD ∴△BOD 为等边三角形 ∴∠OBD=60° ∴∠OBC =∠DBC=30° 在Rt △BOC 中,∵∠OBC=30°∴OBOCOBC ==∠︒30tan tan ∴336=OC ∴OC=32∴BOC OAB S S S ∆-=2扇形阴影3129232623606902-=⨯⨯-⨯⨯=︒︒ππ ★5.(2015.焦作一模)如图(5)所示,在矩形ABCD 中,AB=3,AD=1,把该矩形绕点A 顺时针旋转α得到矩形AB′C′D′,点C′落在AB 的延长线上,则图中阴影部分的面积是__________.图(5)解: 在Rt △ABC 中,由勾股定理得:21)3(2222=+=+=BC AB AC∴AC=2BC ∴∠BAC=30°由旋转的性质得:α=∠BA B′=30° ∴'''ABB C AB S S S 扇形阴影-=∆423360)3(302132'ππ-=⨯⨯-⨯=-=︒︒∆ABB ABC S S 扇形 ★6.(2014.河南)如图,在菱形ABCD 中,AB=1,∠DAB=60°.把菱形ABCD 绕点A 顺时针旋转30°得到菱形A B′C′D′,其中点C 的运动路径为弧C C′,则图中阴影部分的面积为__________.图(6)C'D'CDAB解: 由题意可知:A 、D′、C 三点共线,A 、B 、C′三点共线,如图所示,设BC 与C′D′相交于点E.容易得知:∠BE D′=∠CEE′=90°.设D′E=x ,则BE=x ,C D′=x 2(为什么?) ∴CE=x -1在Rt △D′CE 中,由勾股定理得:222222)2()1(''x x x C D CE E D =-+=+ 解之得:213,21321--=-=x x (舍去) ∴D′E ,213-=CE=233- 433223321321'-=-⨯-⨯=∆CE D S 由菱形的性质并结合勾股定理不难求得:AC=3∴CE D ACC S S S ''2∆-=扇形阴影43322360)3(302-⨯-⨯⨯=︒︒π 323423324-+=--=ππ★7.(2015.新乡一模)如图(7)所示,在Rt △AOB 中,∠AOB=30°,∠A=90°, AB=1,将Rt △AOB 绕点O 顺时针旋转90°得到Rt △COD,则在旋转过程中线段AB 扫过的面积为__________. 解析: 本题中阴影部分是由相关图形的旋转形成的,阴影部分的面积与两个扇形的面积之间的关系为:OAC OBD S S S 扇形扇形阴影-=图(7)解: 在Rt △AOB 中,∵∠AOB=30°∴OB=2AB=2 由勾股定理得:3122222=-=-=AB OB OA ∴OAC OBD S S S 扇形扇形阴影-=︒︒︒︒⨯⨯-⨯⨯=360)3(9036029022ππ443πππ=-=★8.(2014.许昌一模)如图(8)所示,在平面直角坐标系中,已知⊙D 经过原点O,与x 轴、y 轴分别交于A 、B 两点,B 点的坐标为)32,0(,OC 与⊙D 相交于点C,∠OCA=30°,则图中阴影部分的面积为__________.解析: 本题将圆的知识点与平面直角坐标系相结合,使得问题的解决更加灵活.实际上,平面直角坐标系是研究几何或解析几何的有力工具.xy 图(8)DA OBC解: 连结AB.∵∠AOB=90° ∴AB 是⊙D 的直径 ∵∠OCA=30° ∴∠OBA=30° ∵B )32,0( ∴OB=32设OA=x ,则AB=x 2在Rt △AOB 中,由勾股定理得:222222)2()32(x x AB OB OA =+=+解之得:2,221-==x x (舍去) ∴OA=2, AB=4 ∴322322=⨯=∆AOB S ∴AOB S S S ∆-=半圆阴影32232222-=-⨯=ππ在求扇形的面积时确定扇形的半径很重要★9.如图(9)所示,在扇形OAB 中,∠AOB=60°,扇形半径为4,点C 在弧AB 上,CD ⊥OA,垂足为点D,当△OCD 的面积最大时,图中阴影部分的面积为__________.图(9)解析: 本题涉及到三角形面积最大的问题.当直角△COD 满足什么条件时,其面积最大,弄清楚这个问题是解决本题问题的关键.解: 在Rt △COD 中,由勾股定理得:16222==+OC CD OD∵0)(2≥-CD OD∴0222≥+⋅-CD CD OD OD∴8222=+≤⋅CD OD CD OD 显然,当OD=CD 时,取=号,此时△COD是等腰直角三角形,其面积最大,最大值为421=⋅⋅=∆CD OD S COD ∴∠COD=45°∴COD OAC S S S ∆-=扇形阴影4243604452-=-⨯⨯=︒︒ππ ★10.(2015.郑州外国语中学)如图(10)所示,在正方形ABCD 中,对角线AC 、BD 相交于点O,△AOB 绕点B 逆时针旋转60°得到△BO′B′,AB 与弧OO′相交于点E,若AD=2,则图中阴影部分的面积是__________.图(10)E O'OCDAB解: 由题意可知: ∠ABB′=60°,∠EBO′=15° 在Rt △ABD 中,由勾股定理得:22222222=+=+=AB AD BD由正方形的性质得:OB=2 ∴12221''=⨯⨯=∆B BO S ∴''''B BO BEO BAB S S S S ∆--=扇形扇形阴影1360)2(1536026022-⨯⨯-⨯⨯=︒︒︒︒ππ 1127112132-=--=πππ▲11.(2013.湖北潜江模拟)如图(11),在Rt △AB C 中,∠C=90°,∠A=30°, AC=6 cm, CD ⊥AB 于D,以C 为圆心,CD 为半径画弧,交BC 于E,则图中阴影部分的面积为 【 】(A )⎪⎭⎫⎝⎛-π43323cm 2 (B )⎪⎭⎫⎝⎛-π83323cm 2 (C )⎪⎭⎫ ⎝⎛-π4333cm 2(D )⎪⎭⎫ ⎝⎛-π8333cm 2图(11)EDAB CB'AB▲12.(2013.洛阳模拟)如图所示,AB 是⊙O 的切线,OA=1,∠AOB=60°,则图中阴影部分的面积是 【 】(A )π613- (B )π313-(C )π6123- (D )π3123- ▲13.(2015.新乡二模)如图所示,在菱形ABCD 中,∠B=60°,AB=2,扇形AEF 的半径为2,圆心角为60°,则图中阴影部分的面积是__________.FEDCAB▲14.(2013.郑州二模)如图所示,直径AB 为6的半圆,将其绕A 点旋转60°,此时点B 到了点B′处,则图中阴影部分的面积是__________.▲15.(2013.许昌一模)如图所示,在正方形ABCD 中,AB=4,O 为对角线BD 的中点,分别以OB 、OD 为直径作⊙O 1、⊙O 2,则图中阴影部分的面积为__________(结果保留π).▲16.(2015.自贡)如图,AB 是⊙O 的直径,CD ⊥AB,∠CDB=30°,CD=32,则阴影部分的面积为_________.▲17.(2015.省实验中学)如图所示,在平行四边形ABCD 中,AD=2, AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E,连结CE,则阴影部分的面积是________.(结果保留π)CDA▲18.如图,在△ABC中,AB=BC=2,若∠ABC=90°,则图中阴影部分的面积是__________.A C▲19.如图所示,△ABC中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积是__________.▲20.如图所示是两个半圆,点O为大半圆的圆心,AB是大半圆的弦且与小半圆相切,且AB=24,则图中阴影部分的面积为__________.▲21.如图所示,半径为2 cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为__________.BO A▲22.如图所示,在等腰直角△ABC 中,AB=AC=8,以AB为直径的半圆O 交斜边BC于D,则图中阴影部分的面积为__________.DCA B▲23.(2014.赤峰)如图所示,反比例函数)0(>=kxky的图象与原点( 0 , 0 )为圆心的圆交于A、B两点,且点A的坐标为)3,1(,则图中阴影部分的面积为__________.xyBOA属于我们自己的中考九年级数学习题第11页。
圆面积有关的阴影部分面积计算以圆面积有关的阴影部分面积计算为标题的文章应该涵盖以下内容:一、引言圆是数学中的基本几何图形之一,其面积是数学中的重要概念之一。
在实际生活中,我们经常遇到需要计算圆面积的问题,尤其是涉及到圆的阴影部分时。
本文将围绕圆面积与阴影部分面积的计算展开讨论。
二、圆的面积计算公式圆的面积计算公式是数学中的基本知识之一,可通过半径或直径来计算。
圆的面积公式为:S = πr²,其中S表示圆的面积,π是一个常数,约等于3.14,r是圆的半径。
三、阴影部分面积的计算方法1. 圆的阴影部分面积计算当一个圆在光线照射下,其一部分被遮挡形成阴影时,我们需要计算阴影部分的面积。
如果阴影的形状是一个扇形,我们可以使用扇形面积公式来计算。
扇形面积公式为:S = 0.5θr²,其中θ表示扇形的圆心角(以弧度为单位),r表示圆的半径。
2. 圆与其他几何图形的阴影部分面积计算当一个圆与其他几何图形相交时,我们需要计算出圆与其他图形的交集部分的面积。
例如,当一个圆与一个矩形相交时,我们可以将矩形分为两个部分,一个是圆内部的部分,另一个是圆外部的部分。
然后,我们可以计算出这两个部分的面积,并将两个面积相减得到阴影部分的面积。
四、实际应用举例1. 圆形窗户的阴影面积计算假设有一个房间中的圆形窗户,光线从窗户外照射进来,我们想知道窗户内部的阴影面积。
我们可以使用扇形面积公式来计算窗户内部的阴影面积,其中圆心角可以由窗户的位置和光线的方向来确定。
2. 圆形花坛的阴影面积计算想象一个圆形花坛,阳光从上方斜射下来,我们想知道花坛内部的阴影面积。
我们可以将花坛分为两部分,一部分是阳光直接照射的部分,另一部分是被花坛挡住的阴影部分。
通过计算这两个部分的面积,我们可以得到花坛内部的阴影面积。
五、结论本文通过介绍圆的面积计算公式和阴影部分面积的计算方法,以及实际应用举例,帮助读者理解了圆面积与阴影部分面积的计算原理。
圆求阴影部分面积方法圆的阴影部分面积可以通过多种方法求解。
下面将介绍两种常用的方法:几何解法和积分解法。
1.几何解法:首先,我们需要明确阴影的形成原理。
当一个圆形物体在光源的照射下,会在其周围产生一个暗影区域。
暗影区域形状类似于圆形,阴影的大小与光源与圆心之间的位置有关。
在这个问题中,我们假设光源位于圆的正上方,圆位于坐标原点(0,0),光源到圆心的距离为r,圆的半径为R。
首先,我们可以将圆分为四个象限,每个象限的阴影部分面积相同。
以第一象限为例,阴影部分面积可以通过扇形面积和三角形面积之和求解。
扇形面积的计算公式为:A1 = πR^2 θ / 360°,其中θ为扇形的圆心角,可以通过余弦定理计算得到:cosθ = r / (r+R)。
将θ代入公式可得:A1 = πR^2 cosθ。
三角形面积的计算公式为:A2 = (1/2)R^2 sinθ。
四个象限的阴影部分面积之和即为圆的阴影部分面积:A = 4(A1 +A2) = 4(πR^2 cosθ + (1/2)R^2 sinθ)。
2.积分解法:在这种方法中,我们将阴影部分分为无限多个面积微元,然后对每个面积微元求和来计算阴影部分的总面积。
设一些面积微元的宽度为dx,圆上该位置的半径为r(x),根据图形关系可知,r(x) = (R/x) * sqrt(x^2 - r^2)。
那么微元dA的面积可以表示为:dA = 2πr(x)dx,由此可得阴影部分面积的积分公式为:A =∫dA = ∫2πr(x)dx。
所以,我们需要确定积分的上下限。
当x从-r到r变化时,即为圆的直径上的每个点,阴影部分面积的范围。
将r(x)代入积分公式,可得:A = ∫(-r,r)2π(R/x) * sqrt(x^2 - r^2)dx。
这个积分在计算上可能比较复杂,可以改写为:A = 2πR * ∫(-r,r)(1 / sqrt(1 - (r/x)^2))dx。
使用换元法,令 u = r/x,可得到:dx= -r/u^2 du。
圆的半径为5cm,求阴影部分的面积。
《圆的阴影部分面积求解》
假设给定圆的半径为5cm,现在需要求解阴影部分的面积。
我们可以通过几何知识和数学公式
来解决这个问题。
首先,我们知道圆的面积公式为S=πr^2,其中r为圆的半径。
因此,给定圆的半径为5cm,可
以通过公式计算出圆的面积S=π×5^2=25π cm²。
接下来,我们需要找出阴影部分的面积。
画一条与圆心垂直的直线,将圆分为两部分。
我们可以看到阴影部分是一个扇形和一个三角形。
首先计算扇形的面积。
扇形的面积公式为A=0.5r^2θ,其中r为半径,θ为夹角。
在这个问题中,夹角为360°-90°=270°。
将角度转化为弧度,得到θ=270°×π/180=3π/2。
因此扇形的面积为
A=0.5×5^2×3π/2=37.5π cm²。
接着计算三角形的面积。
三角形的面积公式为A=0.5×底×高。
在这个问题中,三角形的底是
5cm,高是5cm。
因此三角形的面积为A=0.5×5×5=12.5 cm²。
最后,将扇形和三角形的面积相加即可得到阴影部分的总面积。
阴影部分的面积为
37.5π+12.5=50 cm²。
综上所述,给定圆的半径为5cm时,阴影部分的面积为50 cm²。
通过数学方法求解,我们得
出了问题的答案。
圆中方阴影部分面积计算公式假设有一个圆,圆心为O,半径为R。
现在在圆的中心往任意方向做直线,与圆相交于两点A和B。
我们需要计算的是圆中方阴影部分的面积。
首先,我们可以将该面积分解为两个部分,即圆扇形的面积和三角形的面积。
1.圆扇形的面积计算:圆扇形的面积可以通过扇形的面积公式来计算,即S1=(θ/360)*π*R²,其中θ为弧度制下的圆心角度数。
我们知道AOB是一个直角三角形,所以θ可以通过AOB的角度来计算。
AOB的角度可以通过反三角函数来计算,即θ = 2 * arccos(AB/2R)。
因此,圆扇形的面积S1 = ((2 * arccos(AB/2R))/360) * π * R²。
2.三角形的面积计算:我们可以将三角形视为一个半径为R的扇形减去一个等腰扇形得到。
等腰扇形的圆心角为θ/2等腰扇形的半径可以通过勾股定理计算,即等腰扇形的半径radius= √(R² - (AB/2)²)。
等腰扇形的面积可以通过扇形的面积公式来计算,即S2=((θ/2)/360)*π*(R²-(AB/2)²)。
所以三角形的面积S3=S1-S2最后,圆中方阴影部分的面积S=S1-S3综上所述,圆中方阴影部分的面积计算公式为:S = ((2 *arccos(AB/2R))/360) * π * R² - ((arccos(AB/2R))/360) * π * (R² - (AB/2)²)。
这个公式可以用于计算圆中方阴影部分的面积,其中AB为线段的长度,R为圆的半径。
圆的面积阴影部分的计算圆的面积是数学中的一个重要概念,常常在几何题目中出现。
而计算圆的面积可以通过平面几何中的一些基本公式来实现。
在这篇文章中,将探讨如何计算圆的面积以及如何计算阴影部分的面积。
首先,我们需要了解圆的基本概念。
圆是由平面上所有到圆心距离相等的点构成的图形。
圆心通常用字母O表示,半径通常用字母r表示。
在计算圆的面积时,我们需要使用圆的半径。
接下来,我们来讨论如何计算圆的阴影部分的面积。
在数学中,阴影部分通常指的是两个或多个图形重叠形成的区域。
计算阴影部分的面积需要先计算重叠部分的面积,然后减去这个面积。
假设我们有两个圆,圆A和圆B,半径分别为r₁和r₂。
这里我们假设圆A的半径大于圆B的半径。
要计算阴影部分的面积,我们可以先计算圆A的面积,然后再计算圆B的面积,并将两个面积相减。
圆A的面积可以通过公式πr₁²来计算,圆B的面积可以通过公式πr₂²来计算。
接下来,我们需要计算两个圆的重叠部分的面积。
重叠部分通常是一个扇形形状。
扇形的面积可以通过计算扇形的圆心角以及扇形的半径来得到。
圆心角可以通过使用三角函数来计算。
假设圆心角为θ,则扇形的面积可以计算为θ/360*πr₂²。
最后,我们将圆A的面积减去圆B的面积再加上重叠部分的面积,即可得到阴影部分的面积。
总结起来,计算圆的面积可以使用公式πr²,其中半径r是一个给定的数值。
计算阴影部分的面积需要先计算两个圆的面积,然后计算重叠部分的面积,最后通过相加和减去得到阴影部分的面积。
在实际问题中,我们还可以应用这些概念来解决一些与圆相关的几何问题。
例如,我们可以计算多个圆的阴影部分的总面积,或者计算不同形状的阴影部分的面积。
通过了解和运用这些概念,我们可以更好地理解圆的面积以及如何计算圆的阴影部分的面积。
这些知识在数学和物理领域中都有广泛的应用。