第4讲 直线、圆的位置关系
- 格式:doc
- 大小:86.50 KB
- 文档页数:5
直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d ,两圆的半径分别为R 和r ,则①两圆外离⇔d >R+r ;有4条公切线;②两圆外切⇔d=R +r ;有3条公切线;③两圆相交⇔R -r <d <R+r (R >r )有2条公切线;④两圆内切⇔d=R -r (R >r )有1条公切线;⑤两圆内含⇔d <R —r (R >r )有0条公切线.(注意:两圆内含时,如果d 为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )例题2图A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;• 当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15 B. 30 C. 45 D.604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移个单位长. OD C B Ax y M B A O C l B A 例题3图 例题8图 例题9图 •A B P C EF •O 例题10图 第3题图 第4题图 第5题图 第6题图OO2O16. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC =1,,则⊙O的半径等于()A.45B.54C.43D.657.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( ) A.相离 B.相交 C.相切 D.不能确定8.如图,在ABC△中,12023AB AC A BC=∠==,°,,A⊙与BC相切于点D,且交AB AC、于M N、两点,则图中阴影部分的面积是(保留π).9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30º,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm,∠P=60°.求弦AB的长.中考题型一、选择题1.(2009年·宁德中考)如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A.43 B.4 C.23 D.2(第1题图)(第2题图)2.(2009年·潍坊中考)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若∠CAB=30°,则BD的长为()A.2R B.3R C.R D.32RBPAOC第8题图第9题图第11题图第10题图第12题图第13题图3.(2009年·襄樊中考)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C,若∠A=25°则∠D 等于( )A .40°B .50°C .60° D.70°(第3题图) (第4题图)4.(2009年湖南省邵阳市)如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =450,则下列结论正确的是( ) A.AD =21BC B.AD =21AC C.AC >AB D.AD >DC二、填空题5.(2009年·綦江县中考)如图,AB 与⊙O 相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .(第5题图) (第6题图)6.(2009年·庆阳市中考)如图直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.三、解答题7.(2009桂林百色)如图,△ABC 内接于半圆,AB 是直径,过A 点作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线; (2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.课后练习题一、填空题:1、在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴,与x轴2、直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是3、R T⊿ABC中,∠C=90°,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的位置关系是4、如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=5、如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=6、如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则AB=7、如图4,直线AB与CD相交于点O,∠AOC=30°,点P在射线OA上,且OP=6cm,以P为圆心,1cm为半径的⊙P以1cm/s的速度沿射线PB方向运动。
第4讲 直线与圆的位置关系★知识梳理★1.判断直线与圆的位置关系有两种方法:①几何法:通过圆心到直线的距离与半径的大小比较来判断,设圆心到直线的距离为d ,圆半径为r ,若直线与圆相离,则r d >;若直线与圆相切,则r d =;若直线与圆相交,则r d < ②代数法:通过直线与圆的方程联立的方程组的解的个数来判断,即通过判别式来判断,若0>∆,则直线与圆相离;若0=∆,则直线与圆相切;若0<∆,则直线与圆相交2.两圆的的位置关系(1)设两圆半径分别为12,r r ,圆心距为d 若两圆相外离,则r R d +> ,公切线条数为4 若两圆相外切,则r R d +=,公切线条数为3 若两圆相交r R d r R +<<-,则,公切线条数为2 若两圆内切,则r R d -=,公切线条数为1 若两圆内含,则r R d -<,公切线条数为0(2) 设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,若两圆相交,则两圆的公共弦所在的直线方程是0)()()(212121=-+-+-F F y E E x D D 3. 相切问题的解法:①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为-1③利用直线与圆的方程联立的方程组的解只有一个,即0=∆来求解。
特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为200r y y x x =+, 圆222)()(r b y a x =-+-的切线方程为200))(())((r b y b y a x a x =--+-- 4.圆系方程①以点),(00y x C 为圆心的圆系方程为)0()()(22020>=-+-r r y y x x②过圆0:22=++++F Ey Dx y x C 和直线0:=++c by ax l 的交点的圆系方程为F Ey Dx y x ++++220)(=+++c by ax λ③过两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C 的交点的圆系方程为11122F y E x D y x ++++0)(22222=+++++F y E x D y x λ(不表示圆2C )★重难点突破★重点:根据给定的方程判定直线与圆、圆与圆的位置关系;利用直线和圆、圆与圆的位置关系的充要条件解决一些简单的问题;难点:借助数形结合,利用圆的几何性质,将题目所给条件转化为圆心到直线的距离、两圆的连心线或半径的和与差重难点:将方程的理论与圆的几何性质相结合,并加以运用 1、把握直线与圆的位置关系的三种常见题型: ①相切——求切线 ②相交——求距离③相离——求圆上动点到直线距离的最大(小)值;问题10y m -+=与圆22220x y x +--=相切,则实数m 等于2、解决直线与圆的位置关系问题用到的思想方法有:①数形结合,善于观察图形,充分运用平面几何知识,寻找解题途径 ②等价转化,如把切线长的最值问题转化为圆外的点到圆心的距离问题,把公切线的条数问题转化为两圆的位置关系问题,把弦长问题转化为弦心距问题等 ③待定系数法,还要合理运用“设而不求”,简化运算过程3、①圆与圆的位置关系转化为圆心距与两圆半径之和或半径之差的关系 ②公共弦满足的条件是:连心线垂直平分公共弦★热点考点题型探析★考点1 直线与圆的位置关系题型1: 判断直线与圆的位置关系[例1 ] (2005北京海淀)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为A.相切B.相交C.相切或相离D.相交或相切[例2] 已知圆1)2(:22=-+y x M ,Q 是x 轴上的动点,QA 、QB 分别切圆M 于B A ,两点(1)若点Q 的坐标为(1,0),求切线QA 、QB 的方程 (2)求四边形QAMB 的面积的最小值(3)若324=AB ,求直线MQ 的方程[例3 ] 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程.题型3: 圆上的点到直线的距离问题[例4 ]已知圆222)5()3(:r y x C =++-和直线0234:=--y x l ,(1)若圆C 上有且只有4个点到直线l 的的距离等于1,求半径r 的取值范围; (2)若圆C 上有且只有3个点到直线l 的的距离等于1,求半径r 的取值范围; (3)若圆C 上有且只有2个点到直线l 的的距离等于1,求半径r 的取值范围; 、【新题导练】1. (山东省威海市 2008年普通高中毕业年级教学质量检测) 在下列直线中,是圆0323222=+-++y x y x 的切线的是 ( ) A .x=0B .y=0C .x=yD .x=-y2. (08山东省临沂市期中考)),2(01sin 12222Z ∈+≠=-+=+k k y x y x ππθθ与直线的位置关系是 ( )A .相离B .相切C .相交D .不能确定3. 已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最大值与最小值之差为_______4、(山东省德州市2008届高中三年级教学质量检测) 已知向量m (2cos ,2sin ),n (3cos ,3sin ),ααββ==若m 与n的夹角为60︒,则直线021sin cos =+-ααy x 与圆221(cos )(sin )2-++=x y ββ的位置关系是D A .相交但不过圆心 B .相交过圆心 C .相切 D .相离5. (广东省普宁市华侨中学2009届高三第三次练兵考试)直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
第4讲直线与圆、圆与圆的位置关系1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).常用知识拓展1.过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.2.过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y -b)=r2.3.过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.4.直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+⎝⎛⎭⎫12l 2.判断正误(正确的打“√”,错误的打“×”)(1)若直线与圆组成的方程组有解,则直线与圆相交或相切.( )(2)若两个圆的方程组成的方程组无解,则这两个圆的位置关系为外切.( ) (3)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (4)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( )答案:(1)√ (2)× (3)× (4)√直线y =x +1与圆x 2+y 2=1的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离解析:选B.因为圆心(0,0)到直线y =x +1的距离d =12=22,而0<22<1,所以直线和圆相交,但不过圆心.圆Q :x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=0解析:选D.因点P 在圆上,且圆心Q 的坐标为(2,0), 所以k PQ =-32-1=-3,所以切线斜率k =33,所以切线方程为y -3=33(x -1), 即x -3y +2=0.若圆C1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则实数m =________. 解析:圆C 1的圆心是原点(0,0),半径r 1=1,圆C 2:(x -3)2+(y -4)2=25-m ,圆心C 2(3,4),半径r 2=25-m ,由两圆外切,得|C 1C 2|=r 1+r 2=1+25-m =5,所以m =9.答案:9(2018·高考全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由题意知圆的方程为x 2+(y +1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y =x +1的距离d =|-1-1|2=2,所以|AB |=222-(2)2=2 2.答案:2 2直线与圆的位置关系(典例迁移)(1)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定(2)(一题多解)圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________. 【解析】 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,从而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b2=1a 2+b2<1,所以直线与圆相交.(2)法一:将直线方程代入圆方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得k ∈(-3,3).法二:圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1,即2k 2+1>1,解得k ∈(-3,3). 【答案】 (1)B (2)k ∈(-3,3)[迁移探究] (变条件)若将本例(1)的条件改为“点M (a ,b )在圆O :x 2+y 2=1上”,则直线ax +by =1与圆O 的位置关系如何?解:由点M 在圆上,得a 2+b 2=1,所以圆心O 到直线ax +by =1的距离d =1a 2+b2=1,则直线与圆O 相切.判断直线与圆的位置关系常用的方法[提醒] 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.1.直线x sin θ+y cos θ=1+cos θ与圆x 2+(y -1)2=12的位置关系是( )A .相离B .相切C .相交D .以上都有可能解析:选A.因为圆心到直线的距离d =|cos θ-1-cos θ|sin 2θ+cos 2θ=1>22,所以直线与圆相离.2.(2019·四川教育联盟考试)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)解析:选C.因为x 2+y 2-2x -2y +b =0表示圆,所以2-b >0,即b <2. 因为直线ax +y +a +1=0过定点(-1,-1),所以点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,所以6+b <0,解得b <-6. 综上,实数b 的取值范围是(-∞,-6).故选C.圆的切线与弦长问题(多维探究)角度一 圆的切线问题过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0【解析】 因为过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条, 所以点(3,1)在圆(x -1)2+y 2=r 2上, 因为圆心与切点连线的斜率k =1-03-1=12,所以切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0.故选B. 【答案】 B角度二 圆的弦长问题(1)(2019·湖北省重点中学联考(二))设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0(2)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.【解析】 (1)当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0,得⎩⎪⎨⎪⎧x =0,y =1-3或⎩⎪⎨⎪⎧x =0,y =1+3,所以|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,因为圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,因为d 2+⎝⎛⎭⎫|AB |22=r 2,所以(k +2)2k 2+1+3=4,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.故选B.(2)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.所以|AB |=6. 【答案】 (1)B (2)6(1)求直线被圆截得的弦长的常用方法①几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB |=2r 2-d 2;②代数法:联立直线与圆的方程得方程组,消去一个未知数得一元二次方程,再利用根与系数的关系结合弦长公式求解,其公式为|AB |=1+k 2|x 1-x 2|.(2)圆的切线方程的求法①几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k ;②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0解析:选A.设直线方程为2x +y +c =0,由直线与圆相切,得d =|c |5=5,c =±5,所以所求方程为2x +y +5=0或2x +y -5=0.2.(2019·广西两市联考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析:设圆心为(a ,b )(a >0,b >0),半径为r ,则由题可知a =2b ,a =r ,r 2=b 2+3,解得a =r =2,b =1,所以所求的圆的方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4圆与圆的位置关系(典例迁移)(1)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab的最大值为( )A.62B.32C.94D .2 3(2)两圆C 1:x 2+y 2+4x +y +1=0,C 2:x 2+y 2+2x +2y +1=0相交于A ,B 两点,则|AB |=________.【解析】 (1)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=a 2+2ab +b 2=9,根据基本不等式可知9=a 2+2ab +b 2≥2ab +2ab =4ab ,即ab ≤94,当且仅当a =b 时,等号成立.故选C.(2)由(x 2+y 2+4x +y +1)-(x 2+y 2+2x +2y +1)=0得弦AB 所在直线方程为2x -y =0. 圆C 2的方程为(x +1)2+(y +1)2=1, 圆心C 2(-1,-1),半径r 2=1. 圆心C 2到直线AB 的距离 d =|2×(-1)-(-1)|5=15.所以|AB |=2r 22-d 2=21-15=455. 【答案】 (1)C (2)455[迁移探究] (变条件)若本例(1)条件中“外切”变为“内切”,求ab 的最大值. 解:由C 1与C 2内切, 得(a +b )2+(-2+2)2=1.即(a +b )2=1, 又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14,当且仅当a =b 时等号成立,故ab 的最大值为14.(1)几何法判断圆与圆的位置关系的步骤 ①确定两圆的圆心坐标和半径;②利用平面内两点间的距离公式求出圆心距d ,并求r 1+r 2,|r 1-r 2|; ③比较d ,r 1+r 2,|r 1-r 2|的大小,然后写出结论. (2)两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,在其中一圆中,由弦心距d ,半弦长l2,半径r 所在线段构成直角三角形,利用勾股定理求解.1.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定解析:选C.由C 1(m ,-2),r 1=3;C 2(-1,m ),r 2=2; 则两圆心之间的距离为|C 1C 2|=(m +1)2+(-2-m )2=2+3=5,解得m =2或-5.故选C.2.圆C 1:x 2+y 2-4x +1=0与圆C 2:x 2+y 2-2x -2y +1=0的公共弦长为( ) A .2 B. 3 C .3D .4解析:选A.两圆联立错误!解得x -y =0.圆C 1可写成(x -2)2+y 2=3,故C 1(2,0),半径为3,圆心(2,0)到直线x -y =0的距离为d =|2|12+12=2,故公共弦长为2(3)2-(2)2=2.直观想象——解决直线与圆的综合问题直观想象是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻辑推理、构建抽象结构的思维基础。
第4讲直线与圆、圆与圆的位置关系1.能根据给定直线、圆的方程判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化方程观点Δ□1<0Δ□2=0Δ□3>0几何观点d □4>r d □5=r d □6<r 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|O 1O 2|□7>r 1+r 2⇔⊙O 1与⊙O 2相离;|O 1O 2|□8=r 1+r 2⇔⊙O 1与⊙O 2外切;|r 1-r 2|□9<|O 1O 2|<r 1+r2⇔⊙O 1与⊙O 2相交;|O 1O 2|□10=|r 1-r 2|⇔⊙O 1与⊙O 2内切(r 1≠r 2);|O 1O 2|□11<|r 1-r 2|⇔⊙O 1与⊙O 2内含.两圆的位置关系与公切线的条数①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.常用结论1.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r2.2.过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=r 2.3.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)设f(x,y)=0表示直线l,g(x,y)=0表示⊙C,则方程g(x,y)+λf(x,y)=0表示过l与⊙C交点的所有圆.()(4)设f(x,y)=0表示⊙C1,g(x,y)=0表示⊙C2,则方程f(x,y)+λg(x,y)=0表示过⊙C1与⊙C2交点的所有圆.()答案:(1)×(2)×(3)√(4)×2.回源教材(1)直线y=3x被圆C:x2+y2-2x=0截得的线段长为.解析:圆C:x2+y2-2x=0的圆心为(1,0),半径为1,圆心到直线y=3x的距离为d=3 2,故弦长为2×1-(32)2=1.答案:1(2)圆x2+y2-2y=0与圆x2+y2-4=0的位置关系为.解析:圆x2+y2-2y=0的圆心为C1(0,1),半径r1=1,圆x2+y2-4=0的圆心为C2(0,0),半径r2=2,由于|C1C2|=r2-r1,所以两圆内切.答案:内切(3)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为.解析:2+y2-4=0,2+y2-4x+4y-12=0,得两圆公共弦所在直线方程x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为22= 2.由勾股定理得弦长为24-2=2 2.答案:22直线与圆的位置关系例1(1)(2024·南充高级中学模拟)已知直线l:kx-y-k-2=0和圆C:x2-2x+4y+y2-1=0,则直线l与圆C的位置关系是()A.相切B.相交C.相离D.相交或相切解析:B圆C的标准方程为(x-1)2+(y+2)2=6,圆心C(1,-2),直线l:kx-y-k-2=0可化为y+2=k(x-1),则直线l过定点(1,-2),因此直线l经过圆心C,所以直线l与圆C相交.故选B.(2)(2024·菏泽期中)已知直线l:x-y+2=0与圆C:x2+y2-2y-2m=0相离,则实数m的取值范围是()A.-12,-14 B.(-∞,-14)C.(-12,-14) D.(-12,+∞)解析:C圆C的标准方程为x2+(y-1)2=2m+1,则m>-12,所以圆心为(0,1),半径为2m+1,由直线与圆相离,可知圆心C到直线l的距离12>2m+1,可得-12<m<-14,即实数m的取值范围为(-12,-14).故选C.反思感悟判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.训练1(1)(多选)(2021·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切解析:ABD选项A ,∵点A 在圆C 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2=|r |,∴直线l 与圆C 相切,A 正确.选项B ,∵点A 在圆C内,∴a 2+b 2<r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2>|r |,∴直线l 与圆C相离,B 正确.选项C ,∵点A 在圆C 外,∴a 2+b 2>r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2<|r |,∴直线l 与圆C 相交,C 错误.选项D ,∵点A 在直线l 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2=|r |,∴直线l 与圆C 相切,D 正确.故选ABD.(2)(2022·新高考Ⅱ卷)设点A (-2,3),B (0,a ),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是.解析:由题意知点A (-2,3)关于直线y =a 的对称点为A ′(-2,2a -3),所以k A ′B =3-a 2,所以直线A ′B 的方程为y =3-a2x +a ,即(3-a )x -2y +2a =0.由题意知直线A ′B 与圆(x +3)2+(y +2)2=1有公共点,易知圆心为(-3,-2),半径为1,所以|-3(3-a )+(-2)×(-2)+2a |(3-a )2+(-2)2≤1,整理得6a 2-11a +3≤0,解得13≤a ≤32,所以实数a 的取值范围是13,32.答案:13,32圆的切线、弦长问题切线问题例2(2023·新课标Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64解析:B如图,由x 2+y 2-4x -1=0得(x -2)2+y 2=5,所以圆心坐标为(2,0),半径r =5,所以圆心到点(0,-2)的距离为(2-0)2+(0+2)2=2 2.由于圆心与点(0,-2)的连线平分角α,所以sin α2=r 22=522=104,又α2∈(0,π2),所以cos α2=64,所以sin α=2sin α2cos α2=2×104×64=154,故选B.弦长问题例3(2023·新课标Ⅱ卷)已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.解析:设直线x -my +1=0为直线l ,由条件知⊙C 的圆心为C (1,0),半径R =2,则圆心C 到直线l 的距离d =21+m 2,|AB |=2R 2-d 2=24-(21+m2)2=4|m |1+m 2.由S △ABC =85,得12×4|m |1+m 2×21+m 2=85,整理得2m 2-5|m |+2=0,解得m =±2或m =±12,故答案可以为2.答案:2(答案不唯一,可以是±12,±2中任意一个)最值(范围)问题例4由直线x-y+4=0上一点向圆(x-1)2+(y-1)2=1引切线,则切线长的最小值为()A.7B.3C.22D.22-1解析:A圆(x-1)2+(y-1)2=1的圆心C(1,1),半径为1,由直线x-y+4=0上一点P向圆(x-1)2+(y-1)2=1引切线,设切点为M,连接PC,MC(图略),则|PM|=|PC|2-|MC|2=|PC|2-1,要使切线长最小,则|PC|最小,而|PC|的最小值等于圆心C到直线x-y+4=0的距离,故|PC|min=|1-1+4|2=22,故切线长的最小值为(22)2-1=7.故选A.反思感悟直线与圆问题的解决方法(1)设圆的半径为r,圆心到直线的距离为d,若直线与圆相切,则d=r;若直线与圆相交,则所得弦长l=2r2-d2.(2)涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.训练2(1)(2024·陕西第一次大联考)已知圆C:x2+y2-4x+8y=0关于直线3x-2ay-22=0对称,则圆C中以(a2,-a2)为中点的弦长为()A.25B.5C.10D.210解析:D圆C的方程可化为(x-2)2+(y+4)2=20,圆心C(2,-4),r=25,∵圆C关于直线3x-2ay-22=0对称,∴直线过圆心C(2,-4),即3×2+8a -22=0,解得a=2.圆心C与点(1,-1)的距离的平方为10,则圆C中以(1,-1)为中点的弦长为2(25)2-10=210,故选D.(2)(2023·全国乙卷)已知实数x,y满足x2+y2-4x-2y-4=0,则x-y的最大值是()A.1+322B.4C.1+32D.72解析:C将方程x2+y2-4x-2y-4=0化为(x-2)2+(y-1)2=9,其表示圆心为(2,1),半径为3的圆.设z=x-y,数形结合知,只有当直线x-y-z=0与圆相切时,z才能取到最大值,此时|2-1-z|2=3,解得z=1±32,故z=x-y的最大值为1+3 2.故选C.圆与圆的位置关系例5(多选)(2024·福建师大附中第三次月考)已知⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,则下列说法中,正确的有()A.若点(1,-1)在⊙O1内,则m≥0B.当m=1时,⊙O1与⊙O2共有两条公切线C.若⊙O1与⊙O2存在公共弦,则公共弦所在直线过定点(13,16)D.∃m∈R,使得⊙O1与⊙O2公共弦的斜率为12解析:BC因为⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,所以⊙O1:(x-m)2+(y+1)2=m2+1,⊙O2:(x-1)2+(y-2m)2=4m2,则O1(m,-1),r1=m2+1,O2(1,2m),r2=2|m|,则m≠0.对于A,由点(1,-1)在⊙O1内,可得(1-m)2+(-1+1)2<m2+1,即m>0,故A错误;对于B,当m=1时,O1(1,-1),r1=2,O2(1,2),r2=2,所以|O1O2|=3∈(2-2,2+2),所以两圆相交,有两条公切线,故B正确;对于C,⊙O1和⊙O2的方程相减,得(-2m+2)x+(2+4m)y-1=0,即m(-2x+4y)+(2x+2y-1)=02x+4y=0,x+2y-1=0,=13,=16,所以⊙O1与⊙O2的公共弦所在直线过定点(13,16),故C正确;对于D,公共弦所在直线的斜率为2m-22+4m,令2m-22+4m=12,无解,故D错误.故选BC.反思感悟1.判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和与差的绝对值的关系,一般不用代数法.2.两圆公共弦长的求法先求出公共弦所在直线的方程,在其中一圆中,由弦心距d,半弦长l2,半径r构成直角三角形,利用勾股定理求解.训练3(1)圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,则m的取值范围是()A.(-∞,-5]B.[5,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:D将x2+2mx+y2+m2-1=0化为标准方程得(x+m)2+y2=1,即圆心为(-m,0),半径为1,圆x2+(y-2)2=4的圆心为(0,2),半径为2,因为圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,所以两圆的位置关系为外切或相离,所以m2+4≥2+1,即m2≥5,解得m∈(-∞,-5]∪[5,+∞).故选D.(2)(多选)已知圆O1:x2+y2-2x=0和圆O2:x2+y2+2x-8y=0的交点为A,B,则下列结论正确的是()A.直线AB的方程为x-2y=0B.|AB|=255C.线段AB的垂直平分线方程为2x+y-2=0D.若点P为圆O1上的一个动点,则点P到直线AB的距离的最大值为55+1解析:ACD根据题意,由x2+y2-2x=0,得(x-1)2+y2=1,则圆心O1(1,0),半径r=1,由x2+y2+2x-8y=0,得(x+1)2+(y-4)2=17,则圆心O2(-1,4),半径R=17.对于A 2+y2-2x=0,2+y2+2x-8y=0,得x-2y=0,即直线AB的方程为x-2y=0,A正确;对于B,圆心O1到直线AB的距离为d=|1-0|1+4=55,则|AB|=2×1-15=455,B错误;对于C,线段AB的垂直平分线即直线O1O2,由O1(1,0),O2(-1,4),易得直线O1O2的方程为2x+y-2=0,C正确;对于D,由圆心O1到直线AB的距离d=55,知点P到直线AB的距离的最大值为55+1,D正确.故选ACD.限时规范训练(六十)A级基础落实练1.圆(x+1)2+(y-2)2=4与直线3x+4y+5=0的位置关系为()A.相离B.相切C.相交D.不确定解析:B由题意知,圆(x+1)2+(y-2)2=4的圆心为(-1,2),半径r=2,则圆心到直线3x+4y+5=0的距离d=|-3+8+5|32+42=2=r,所以直线3x+4y+5=0与圆(x+1)2+(y-2)2=4的位置关系是相切.2.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是()A.外离B.相交C.外切D.内切解析:B由题意知,圆O1:(x-1)2+y2=1,可得圆心坐标O1(1,0),半径r1=1,圆O2:x2+(y-2)2=4,可得圆心坐标为O2(0,2),半径r2=2,则两圆的圆心距O1O2=1+4=5,则2-1<5<2+1,即|r2-r1|<O1O2<r1+r2,所以圆O1与圆O2相交.3.(2023·浙江嘉兴期末)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为22,则过圆心C且与直线l垂直的直线的方程为()A.x+y-3=0B.x-y+3=0C.x +y +3=0D.x -y -3=0解析:A 设所求的直线方程为x +y +m =0,圆C 的圆心坐标为(a ,0),则由题意知(|a -1|2)2+2=(a -1)2,解得a =3或a =-1,因为圆心在x 轴的正半轴上,所以a =3.因为圆心(3,0)在所求的直线上,所以有3+0+m =0,得m =-3,故所求的直线方程为x +y -3=0.故选A.4.(2024·深圳罗湖区期末)圆O 1:x 2+y 2-4y -6=0与圆O 2:x 2+y 2-6x +8y =0公共弦长为()A.5B.10C.25D.35解析:C联立两个圆的方程2+y 2-4y -6=0,2+y 2-6x +8y =0,两式相减可得公共弦方程为x -2y -1=0,圆O 1:x 2+(y -2)2=10的圆心坐标为O 1(0,2),半径r =10,圆心O 1(0,2)到公共弦的距离d 1=|0-4-1|1+4=5,公共弦长d =2r 2-d 21=210-5=25,故选C.5.(2024·抚州临川一中期末)已知圆C :(x -3)2+(y -4)2=4和两点A (-3m ,0),B (3m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最小值为()A.6B.5C.2D.3解析:D 由题意得,点P 在以原点为圆心,3m 为半径的圆上,因为点P 在圆C 上,所以只要两圆有交点即可,所以|3m -2|≤5≤3m +2,解得3≤m ≤733,所以m 的最小值为3,故选D.6.(2024·皖江名校第五次联考)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心C 在直线x -y +7=0上.若⊙C 与⊙O 相切,则满足条件的⊙C 有()A.1个B.2个C.3个D.4个解析:D设圆心C (a ,a +7).当⊙C 与x 轴相切时,半径r =|a +7|,故a 2+(a +7)2=2+|a +7|,即a 2-4=4|a +7|,解得a =-4或a =8,所以⊙C的方程为(x+4)2+(y-3)2=9或(x-8)2+(y-15)2=225.当⊙C与y轴相切时,半径r=|a|,故a2+(a+7)2=2+|a|,即(a+7)2=4+4|a|,解得a=-3或a=-15,所以⊙C的方程为(x+3)2+(y-4)2=9或(x+15)2+(y+8)2=225,则满足条件的⊙C有4个.故选D.7.(2024·长沙模拟)若圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,则正实数a的取值范围为.解析:|C1C2|=9+(a+1)2,因为圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,所以|a-2|<9+(a+1)2<a+2,解得a>3.答案:(3,+∞)8.若一条光线从点A(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为.解析:点A(-2,-3)关于y轴的对称点为A′(2,-3),故可设反射光线所在直线的方程为y+3=k(x-2),化为kx-y-2k-3=0,∵反射光线与圆(x+3)2+(y-2)2=1相切,∴圆心(-3,2)到直线的距离d=|-3k-2-2k-3|k2+1=1.化为24k2+50k+24=0,∴k=-43或-34.答案:-43或-349.(2024·苏北四市模拟)过点P(1,1)作圆C:x2+y2=2的切线交坐标轴于点A,B,则PA→·PB→=.解析:∵12+12=2,∴点P 在圆C 上,∴PC ⊥AB .∵k CP =1-01-0=1,∴直线AB 的斜率k AB =-1,∴直线AB 的方程为y -1=-(x -1),即x +y -2=0.不妨设直线AB 与x 轴交点为A ,与y 轴交点为B ,得点A (2,0),B (0,2),∴PA →=(1,-1),PB →=(-1,1),∴PA →·PB →=-1-1=-2.答案:-210.已知圆C :x 2+y 2-6x -8y +21=0,直线l 过点A (1,0).(1)求圆C 的圆心坐标及半径长;(2)若直线l 与圆C 相切,求直线l 的方程;(3)当直线l 的斜率存在且与圆C 相切于点B 时,求|AB |.解:圆C 的方程为(x -3)2+(y -4)2=22.(1)圆C 的圆心坐标是(3,4),半径长是2.(2)①当直线l 的斜率不存在,即其方程是x =1,满足题意.②当直线l 的斜率存在时,可设直线l 的方程是y =k (x -1),即kx -y -k =0.由圆心(3,4)到直线l 的距离等于圆C 的半径,即|3k -4-k |k 2+1=2,解得k =34,此时直线l 的方程是3x -4y -3=0.综上,直线l 的方程是x =1或3x -4y -3=0.(3)由(2)得直线l 的方程是3x -4y -3=0.圆C 的圆心是点C (3,4),则|AC |=4+16=25,所以|AB |=|AC |2-|BC |2=20-22=4.11.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0.(1)设直线l 与圆C 交于不同两点A ,B ,求弦AB 的中点M 的轨迹方程;(2)若定点P (1,1)分弦AB 为AP ∶PB =1∶2,求此时直线l 的方程.解:(1)直线l :mx -y +1-m =0变形为m (x -1)-y +1=0,可知直线l 恒过点(1,1),由圆C 的方程可知圆心C (0,1),过C 作CM ⊥l 于M ,可知M 为线段AB 的中点,设M (x ,y ),则有x 2+(y -1)2+(x -1)2+(y -1)2=12,化简得x 2+y 2-x -2y +1=0,点(1,1)也满足此方程,故M 的轨迹方程为x 2+y 2-x -2y +1=0.(2)设A (x 1,y 1),B (x 2,y 2),由AP ∶PB =1∶2,得1-x 1=12(x 2-1),化简得x 2=3-2x 1,①-y +1-m =0,2+(y -1)2=5,消去y 得(1+m 2)x 2-2m 2x +m 2-5=0,②∴x 1+x 2=2m 21+m 2,③由①③解得x 1=3+m 21+m 2,代入②式,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0.B 级能力提升练12.(2024·南通海安期末)已知圆心均在x 轴上的两圆外切,半径分别为r 1,r 2(r 1<r 2),若两圆的一条公切线的方程为y =24(x +3),则r 2r 1=()A.43B.2C.54D.3解析:B不妨设两圆为圆C 1和C 2,圆C 1:(x -a )2+y 2=r 21,圆C 2:(x -b )2+y 2=r 22,其中r 1>0,r 2>0,-3<a <b .由于两圆的公切线方程为x -22y +3=0,则r 1=|a +3|1+(-22)2=a +33,r 2=|b +3|1+(-22)2=b +33.由两圆外切,得|C 1C 2|=b -a =r 1+r 2=a +33+b +33,化简得b =2a +3,则r 2r 1=b +3a +3=2,故选B.13.(多选)有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),则下列命题正确的是()A.不论k 如何变化,圆心C k 始终在一条直线上B.所有圆C k 均不经过点(3,0)C.存在定直线始终与圆C k 相切D.若k ∈(-22,322),则圆C k 上总存在两点到原点的距离均为1解析:ABC圆C k 的圆心C k (k ,k ),在直线y =x 上,A 正确;由(3-k )2+(0-k )2=4,化简得2k 2-6k +5=0,Δ=36-40=-4<0,无实数解,B 正确;由A 选项的分析知,圆心C k 在直线y =x 上,半径为定值2,假设存在定直线始终与圆C k 相切,则定直线的斜率一定为1,设为y =x +b ,则圆心到定直线的距离为|b |2=2,得b =±22,故存在定直线y =x ±22始终与圆C k 相切,C 正确;圆C k 上总存在两点到原点的距离均为1,可转化为圆x 2+y 2=1与圆C k 有两个交点,则2-1<|2k |<2+1,得-322<k <-22或22<k <322,即k ∈(-322,-22)∪(22,322),D 错误.故选ABC.14.已知圆C :(x -3)2+(y -4)2=4.(1)若直线l :(m -2)x +(1-m )y +m +1=0(m ∈R ),证明:无论m 为何值,直线l 都与圆C 相交;(2)若过点P (1,0)的直线m 与圆C 相交于A ,B 两点,求△ABC 面积的最大值,并求此时直线m 的方程.解:(1)证明:转化l 的方程(m -2)x +(1-m )y +m +1=0,可得m (x -y +1)-2x +y +1=0,-y +1=0,2x +y +1=0,=2,=3,所以直线l 恒过点(2,3),由(2-3)2+(3-4)2=2<4,得点(2,3)在圆内,即直线l恒过圆内一点,所以无论m为何值,直线l都与圆C相交.(2)由C的圆心为(3,4),半径r=2,易知此时直线m的斜率存在且不为0,故设直线m的方程为x=my+1(m≠0),直线m的一般方程为my-x+1=0,圆心到直线m的距离d=|4m-3+1|m2+(-1)2=|4m-2|m2+1,所以|AB|=2r2-d2=24-(4m-2)2 m2+1,所以S2=(12|AB|·d)2=4-(4m-2)2m2+1·(4m-2)2m2+1,令t=(4m-2)2m2+1,可得S2=4t-t2,当t=2时,S2max=4,所以△ABC面积的最大值为2,此时由2=(4m-2)2m2+1,得7m2-8m+1=0,得m=1或m=17,符合题意,此时直线m的方程为x-y-1=0或7x-y-7=0.。
第4讲 直线、圆的位置关系1.考查直线与圆相交、相切的问题.能根据给定直线、圆的方程判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系.2.考查与圆有关的量的计算,如半径、面积、弦长的计算. 【复习指导】1.会用代数法或几何法判定点、直线与圆的位置关系.2.掌握圆的几何性质,通过数形结合法解决圆的切线、直线被圆截得的弦长等直线与圆的综合问题,体会用代数法处理几何问题的思想.1.直线与圆的位置关系位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系: d <r ⇔相交,d =r ⇔相切,d >r ⇔相离. 2.圆与圆的位置关系的判定设⊙C 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),⊙C 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0),则有: |C 1C 2|>r 1+r 2⇔⊙C 1与⊙C 2相离; |C 1C 2|=r 1+r 2⇔⊙C 1与⊙C 2外切; |r 1-r 2|<|C 1C 2|<r 1+r 2⇔⊙C 1与⊙C 2相交; |C 1C 2|=|r 1-r 2|(r 1≠r 2)⇔⊙C 1与⊙C 2内切; |C 1C 2|<|r 1-r 2|⇔⊙C 1与⊙C 2内含. 一条规律过圆外一点M 可以作两条直线与圆相切,其直线方程可用待定系数法,再利用圆心到切线的距离等于半径列出关系式求出切线的斜率即可. 一个指导直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,“代数法”侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.解题时应根据具体条件选取合适的方法. 两种方法计算直线被圆截得的弦长的常用方法 (1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算. (2)代数方法运用根与系数关系及弦长公式 |AB |=1+k 2|x A -x B |说明:圆的弦长、弦心距的计算常用几何方法.1.(2013年陕西)已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定答案B2.(2013天津)已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( )A .12-B .1C .2D .12答案C3.(2011·安徽)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( ). A .-1 B .1 C .3 D .-3解析 由已知得圆的圆心为(-1,2),则3×(-1)+2+a =0,∴a =1. 答案 B4.(2012·东北三校联考)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ). A .相离 B .相交 C .外切 D .内切解析 圆O 1的圆心为(1,0),半径r 1=1,圆O 2的圆心为(0,2),半径r 2=2,故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交. 答案 B5.(2013年浙江)直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于__________.答案考向一 直线与圆的位置关系的判定及应用【例1】(2011·东莞模拟)若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为( ). A .[-3,3] B .(-3,3) C.⎣⎡⎦⎤-33,33 D.⎝⎛⎭⎫-33,33 [审题视点] 设出直线l 的点斜式方程,构造圆心到直线距离与半径的关系的不等式,从而求解. 解析 设直线l 的方程为:y =k (x -4),即kx -y -4k =0 则:|2k -4k |1+k 2≤1.解得:k 2≤13,即-33≤k ≤33.答案 C【反思与悟】 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.【变式1-1】(2013年高考广东)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 ( )A .0x y +=B .10x y ++=C .10x y +-=D .0x y +=答案A考向二 圆与圆的位置关系的判定及应用【例2】若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________. [审题视点] 两圆方程相减得公共弦所在的直线方程,再利用半径、弦长的一半及弦心距构成的直角三角形解得.解析 两圆的方程相减,得公共弦所在的直线方程为(x 2+y 2+2ay -6)-(x 2+y 2)=0-4⇒y =1a ,又a>0,结合图象,再利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a =1⇒a =1. 答案 1【反思与悟】 当两圆相交时求其公共弦所在的直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长. 【变式2-1】 (2011·济南模拟)两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( ).A .1条B .2条C .3条D .4条解析 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=13<4,则两圆相交⇒只有两条外公切线,故选B. 答案 B考向三 直线与圆的综合问题【例3】(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点. (1)若|AB |=423,求|MQ |、Q 点的坐标以及直线MQ 的方程; (2)求证:直线AB 恒过定点.[审题视点] 第(1)问利用平面几何的知识解决;第(2)问设点Q 的坐标,从而确定点A 、B 的坐标与AB 的直线方程.(1)解 设直线MQ 交AB 于点P ,则|AP |=232,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13, 又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明 设点Q (q,0),由几何性质,可知A 、B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,即为qx -2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 【反思与悟】 在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.【变式3-1】(2013江苏)本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.解:(1)由⎩⎨⎧-=-=142x y x y 得圆心C 为(3,2),∵圆C 的半径为1∴圆C 的方程为:1)2()3(22=-+-y x显然切线的斜率一定存在,设所求圆C 的切线方程为3+=kx y ,即03=+-y kx∴113232=++-k k ∴1132+=+k k ∴0)34(2=+k k ∴0=k 或者43-=k∴所求圆C 的切线方程为:3=y 或者343+-=x y 即3=y 或者01243=-+y x (2)解:∵圆C 的圆心在在直线42:-=x y l 上,所以,设圆心C 为(a,2a-4) 则圆C 的方程为:[]1)42()(22=--+-a y a x又∵MO MA 2=∴设M 为(x,y)则22222)3(y x y x +=-+整理得:4)1(22=++y x 设为圆D∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点 ∴[]12)1()42(1222+≤---+≤-a a由08852≥+-a a 得R x ∈由01252≤-a a 得5120≤≤x 终上所述,a 的取值范围为:⎥⎦⎤⎢⎣⎡512,高考中与圆交汇问题的求解从近两年新课标高考试题可以看出高考对圆的要求大大提高了,因此也就成了高考命题的一个新热点.由于圆的特有性质,使其具有很强的交汇性,在高考中圆可以直接或间接地综合出现在许多问题之中,复习备考时值得重视. 一、圆与集合的交汇【示例】(2011·江苏)A =222(2),,2m x y m x y R ⎧⎫≤-+≤∈⎨⎬⎩⎭(x,y)/,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.二、圆与概率的交汇【示例】 (2011·湖南)已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________.三、圆与圆锥曲线交汇【示例】 (2010·陕西)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ). A.12B .1C .2D .4。
第4讲 直线、圆的位置关系
1.直线与圆的位置关系
位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:――→判别式Δ=b 2-4ac ⎩⎨
⎧
Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.
(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交,d =r ⇔相切,d >r ⇔相离. 2.圆与圆的位置关系的判定
设⊙C 1:(x -a 1)2+(y -b 1)2=r 2
1(r 1>0), ⊙C 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0),则有:
|C 1C 2|>r 1+r 2⇔⊙C 1与⊙C 2相离; |C 1C 2|=r 1+r 2⇔⊙C 1与⊙C 2外切; |r 1-r 2|<|C 1C 2|<r 1+r 2⇔⊙C 1与⊙C 2相交; |C 1C 2|=|r 1-r 2|(r 1≠r 2)⇔⊙C 1与⊙C 2内切; |C 1C 2|<|r 1-r 2|⇔⊙C 1与⊙C 2内含. 一条规律
过圆外一点M 可以作两条直线与圆相切,其直线方程可用待定系数法,再利用圆心到切线的距离等于半径列出关系式求出切线的斜率即可. 一个指导
直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,“代数法”侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.解题时应根据具体条件选取合适的方法. 两种方法
计算直线被圆截得的弦长的常用方法 (1)几何方法
运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.
(2)代数方法
运用根与系数关系及弦长公式 |AB |=1+k 2|x A -x B | =(1+k 2)[(x A +x B )2-4x A x B ].
说明:圆的弦长、弦心距的计算常用几何方法.
1.(人教A 版教材习题改编)已知圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ). A .相切 B .相交但直线不过圆心 C .相交过圆心
D .相离
2.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( ). A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0
D .x -3y +2=0
3.(2011·安徽)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为
( ).
A .-1
B .1
C .3
D .-3
4.(2012·东北三校联考)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ).
A .相离
B .相交
C .外切
D .内切
5.(2012·沈阳月考)直线x -2y +5=0与圆x 2+y 2=8相交于A 、B 两点,则|AB |=________.
考点一 直线与圆的位置关系的判定及应用
6(2011·东莞模拟)若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为( ). A .[-3,3] B .(-3,3) C.⎣⎢⎡⎦⎥⎤-33
,33
D.⎝ ⎛⎭⎪⎫
-33
,33
已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直
线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.
7(2011·江西)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).
A.⎝ ⎛⎭⎪⎫-33
,33
B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫
0,33
C.⎣⎢⎡⎦⎥⎤
-33
,33
D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭
⎪⎫3
3,+∞
考点二 圆与圆的位置关系的判定及应用
8若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.
当两圆相交时求其公共弦所在的直线方程或是公共弦长,只要把两圆
方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.
9 (2011·济南模拟)两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( ). A .1条 B .2条 C .3条 D .4条
考点三 直线与圆的综合问题
10(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.
(1)若|AB |=42
3,求|MQ |、Q 点的坐标以及直线MQ 的方程; (2)求证:直线AB 恒过定点.
在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在
直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.
11 已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.
(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程. 一、圆与集合的交汇
12 (2011·江苏)A =⎩
⎪⎨⎪⎧⎭
⎪⎬⎪
⎫(x ,y )⎪⎪⎪ m 2
≤(x -2)2
+y 2
≤m
2
,x ,y ∈R ,B ={(x ,y )|2m ≤x +
y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________. 、圆与概率的交汇
13(2011·湖南)已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;
(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. 三、圆与圆锥曲线交汇
14(2010·陕西)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ).
A.1
2 B .1 C .2 D .4
1B2D3B4B5 236C7B8 19B12 13
14 2
10 (1)解 设直线MQ 交AB 于点P ,则|AP |=2
32,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=
12-89=13,
又∵|MQ |=|MA |2
|MP |,∴|MQ |=3.
设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).
从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.
(2)证明 设点Q (q,0),由几何性质,可知A 、B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,即为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛
⎭⎪⎫0,32.
11解
(1)如图所示,|AB |=43,设D 是线段AB 的中点,则CD ⊥AB , ∴|AD |=23,|AC |=4.C 点坐标为(-2,6).在Rt △ACD 中,可得|CD |=2. 设所求直线l 的斜率为k ,则直线l 的方程为:y -5=kx ,即kx -y +5=0. 由点C 到直线AB 的距离公式:|-2k -6+5|k 2+(-1)2=2,得k =
3
4.又直线l 的斜率不存在时,也满足题意,此时方程为x =0. 当k =3
4时,直线l 的方程为3x -4y +20=0. ∴所求直线l 的方程为x =0或3x -4y +20=0.
(2)设过P 点的圆C 的弦的中点为D (x ,y ),则CD ⊥PD , 即CD →·PD →=0,∴(x +2,y -6)·(x ,y -5)=0, 化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.。