博弈论
- 格式:ppt
- 大小:1.42 MB
- 文档页数:48
博弈论约翰·冯·诺依曼博弈论的概念博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。
在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。
按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。
所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。
博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。
此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。
按照Aumann所撰写的《新帕尔格雷夫经济学大辞典》“博弈论”辞条的看法,标准的博弈论分析出发点是理性的,而不是心理的或社会的角度。
不过,近20年来结合心理学和行为科学、实验经济学的研究成就而对博弈论进行一定改造的行为博弈论(behavoiral game theory )也日益兴起。
博弈论的发展博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
2.2.1 博弈论的定义现代经济学的最新发展有一个特别引人注目的特点,那就是博弈论在经济学中越来越受到重视。
博弈论,又称为对策论,它是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题①。
简单地说,就是研究决策主体的行为在发生直接相互作用时,他们如何进行决策,以及这种决策的均衡问题。
1944 年冯·诺依曼和摩根斯特恩(Morgenstern)合作出版了《博弈论与经济行为》(The Theory of Games and Economic Behavior),开始将博弈论引入经济学,成为现代经济博弈论研究的开端。
20 世纪50 年代纳什(John F. Nash)、塔克(Tucker)等人的研究,奠定了现代博弈论的基石。
在其后的几十年里,许多经济学家致力于博弈论的研究,1965 年泽尔腾(Reinhard Selten)将纳什均衡的概念引入了动态分析;1967-1968 年,海萨尼(John C. Harsanyi)把不完全信息分析引入博弈论的研究;1982 年克瑞普斯(David M. Kreps)和威尔逊(RobertWilson)分析了动态不完全信息条件下的博弈问题。
1994 年诺贝尔经济学奖授予了纳什、泽尔腾和海萨尼三位博弈论专家,此后在2001 年诺贝尔经济学奖同样授予了三位博弈论的专家②。
博弈论是一种关于行为主体策略相互作用的理论,它已形成了一套完整的理论体系和方法论体系。
它具有基本假设的合理性、研究对象的普遍性、研究结论的真实性、方法论的实证性等特点。
正是因为这些特点,博弈论的产生和发展引发了一场深刻的经济学革命,使得现代经济学从方法论,到概念和分析的方法体系,都发生了很大的变化。
正如克瑞普斯(Kreps)在《博弈论与经济模型》一书中指出“在过去一二十年中,经济学在方法论,以及语言、概念等等方面,经历了一场温和的革命,非合作博弈已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不①懂纳什均衡能够‘消化’近代文献的领域。
什么是博弈论?博弈论是一门研究策略决策的学科,它涉及到两个或多个参与者的博弈过程。
博弈论的研究对象可以是经济、政治、社会等领域,也可以是日常生活中的人际交往。
下面,我们来详细了解一下这门学科。
一、博弈论的起源博弈论起源于20世纪40年代,当时美国数学家冯·诺依曼(John von Neumann)和经济学家奥斯卡·莫根斯特恩(Oskar Morgenstern)合著了《博弈论与经济行为》一书。
这是一本奠定博弈论基础的重要著作,它将博弈论应用于经济学领域,从而成为博弈论的奠基之作。
二、博弈论的基本概念1.参与者博弈论的参与者指的是博弈过程中参与决策的个体或组织,例如一个独立的个人、两个公司或国家之间的竞争。
2.策略策略是指参与者在博弈中所采用的行为方式或决策方法。
不同的策略可能导致不同的博弈结果,因此博弈过程中策略的选择非常重要。
3.收益收益是博弈过程中参与者所能获取的利益,包括经济利益、社会地位、权力等。
收益对参与者而言是决策的目的和结果,因此其大小和分布会影响博弈的结果。
4.博弈形式博弈形式指的是博弈参与者、策略和收益之间的关系,是博弈过程的精神核心。
博弈形式一般分为合作博弈和非合作博弈两种,而在这两种博弈形式下,又分别有多种复杂的形式。
三、博弈论的应用1.经济学领域博弈论在经济学领域的应用最为广泛。
经济学研究的主题之一是市场竞争,而博弈论可以帮助我们透彻理解市场竞争的规律。
例如,博弈论可以用来研究企业之间的价格战、垄断行为、拍卖等问题。
2.政治学领域博弈论在政治学领域的应用也非常重要。
政治学研究的主题之一是国家之间的竞争和协作,而博弈论可以帮助我们研究国际关系、外交政策等问题。
例如,博弈论可以用来研究国际贸易谈判、军备竞赛等问题。
3.人际交往领域博弈论在人际交往领域的应用也相当重要。
通过博弈论,我们可以学习如何有效地沟通和合作,避免双方的冲突和误解。
例如,博弈论可以用来研究双方的协调、合作等问题。
博弈论是一种处理竞争与合作问题的数学决策方法;研究竞争中参加者为争取最大利益应当如何做出决策的数学方法;根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈的分类根据不同的基准也有所不同。
一般认为,博弈主要可以分为合作博弈和非合作博弈。
它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。
即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。
1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。
1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。
两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。
倘若不能,则称非合作博弈(Non-cooperative game)。
合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。
目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。
博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。
把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。
《博弈论》知识点总结高中一、引言博弈论是数学的一个分支,探究的是在多个参与者决策的状况下,参与者之间的最优策略选择。
博弈论不仅在经济学、管理学等社会科学领域有重要应用,而且在生物学、计算机科学、战略决策等领域也有广泛应用。
在高中阶段,我们将进一步了解博弈论的相关知识,精通其基本原理和应用方法。
二、博弈论的基本观点1. 博弈形式博弈形式是博弈双方的策略选择和支付函数的描述。
通常用一个数学模型表示,包括博弈参与者、参与者可实行的策略、以及参与者之间的支付函数。
2. 纳什均衡纳什均衡是博弈论中的核心观点,指的是在一个博弈形式中,全部参与者选择的策略互相一致,没有改变策略的动机。
纳什均衡可以是单一的,也可以是多个同时存在的。
三、经典的博弈论问题1. 帕累托改进帕累托改进是对博弈形式进行改进,使得至少有一个参与者的支付得到提高,而其他参与者的支付不受损。
帕累托改进是为了创设更好的博弈结果,改进策略的选择。
2. 环保囚徒逆境环保囚徒逆境是博弈论中经典的问题之一。
逆境的情境是两名罪犯(囚徒)被抓获,警方没有足够的证据定罪,只能以较轻的罪名裁定,但若果两人都选择供出对方,那么都会得到较重的刑罚。
囚徒之间需要合作做出决策,以达到双方利益的最大化。
3. 博弈矩阵博弈矩阵是一种常见的博弈形式描述方式,用来表示参与者的策略选择和相应的支付函数。
矩阵中的每个元素表示参与者所得到的支付。
通过博弈矩阵可以便利地分析博弈中各个参与者的最优策略。
四、博弈论的应用1. 经济学博弈论在经济学中有广泛的应用,特殊是在市场竞争和战略决策中。
通过分析参与者之间的博弈干系,可以猜测市场行为和做出最优决策。
例如,博弈论可以诠释价格竞争、拍卖机制以及操纵市场策略等经济现象。
2. 生物学生物学中的适者生存和进化问题,也可以用博弈论进行建模和分析。
通过博弈论的方法,可以探究动物群体中的合作与竞争干系,以及基因在群体中的演化。
3. 计算机科学在人工智能和计算机科学领域,博弈论被广泛应用于智能决策和机器进修。
一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。
2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。
3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。
4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。
在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。
7、均衡:所有参与人的最优战略组合。
8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。
9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。
10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。
11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。
12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。
13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。
博弈最简单的解释博弈论是一种研究策略决策和结果的数学分析方法。
在博弈论中,两个或多个参与者通过选择动作或策略来决定最终结果。
这些结果通常是由获胜者和输家以及获得的利益或损失来表示的。
在一些博弈中,胜利既不完全受手上的牌或棋子的强度制约,也不完全受对手的动作的规定;在许多博弈中,其他因素会影响到胜利与否。
胜利还可能取决于谁先行动,每个人的信息素质,对手是否协作,行动的先后顺序等因素。
因此,博弈论并不是一种纯粹的数学领域,也涉及了统计学、心理学、经济学等广泛的领域。
下面分别介绍博弈所涉及的主要概念和理论。
1. 博弈的基本概念博弈是一种决策过程,在博弈中每个参与者都必须在有限的时间内做出决策,并根据自己的决策和对手的决策来获得利益或承担损失。
每个参与者在博弈中的作用可以称为操作者或者玩家,每个操作者可能会面对多种选择(动作或策略)。
博弈包括确定性博弈和随机博弈。
确定性博弈是指每个参与者在决策时都有确定性结果的博弈,而随机博弈则是指参与者面临的结果有可能是不确定的或随机的。
2. 零和博弈和非零和博弈零和博弈是指参与者的收益是一项非常确定的事情,换句话说,一个参与者的损失就是另一个参与者的收益,总和为0。
在零和博弈中,各个操作者在利益上互相对抗,每个人的收益和损失成反比。
非零和博弈是指参与者的收益不一定相等,因此博弈的结果不可能表示为0的总和。
在这种情况下,博弈中参与者的收益和损失完全不同。
3. 纳什均衡纳什均衡是指在博弈中,参与者都采取了使其收益最大化的策略后,不再改变其策略成为更优效果的状态。
换句话说,它是一种达到了稳定状态的博弈状态,而双方没有必要改变他们的策略。
纳什均衡是一种理论概念,它保证参与者在博弈中都采取最优策略。
但是,并不是所有的博弈都存在纳什均衡状态。
4. 最小最大决策准则最小最大决策准则是博弈论中的一种分析工具,它可以找出一个参与者在博弈中采取的最佳策略。
最小最大决策准则是指通过对少一方可能获得的最小利益进行最小化,使得他们能够获得最大利益。
1.什么是博弈论?“博弈论”译自英文“Game Theory”,直译就是“游戏理论”。
博弈论是研究行为人在矛盾和对抗性关系中的行为决策中一般性规律规律的学科。
是系统研究各种博弈问题,寻求在各博弈方具有充分或者有限理性、能力的条件下,合理的策略选择和合理选择策略时博弈的结果,并分析这些结果的经济意义、效率意义的理论和方法。
博弈:一些个人、组织,面对一定的环境条件,在一定的规律下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。
包括:博弈的参加者,各博弈方的全部策略或行为集合,进行博弈的次序,博弈方的得益四方面。
纳什均衡:设存在一个策略组合Bx’和By’,且Bx’∈Bx(Bx1,Bx2,……,BxN),By’∈By(By1,By2,……,ByN) ,当x选择Bx’时,y的最优策略选择是By’,同时,当y选择By’时,x的最优选择是Bx’,因此,x和y选择了Bx’和By’时,谁都不会再改变策略。
这种局面称为Nash均衡,是Nash最早提出并证明了它的存在。
1951年Nash提出了Nash均衡的概念,并证明了Nash均衡的存在——真正奠定了博弈论作为一门学科的基础。
之前,虽然有很多人致力于研究博弈对策的规律,但总没有得出有意义的成果,直到Nash。
n人博弈纳什均衡定⏹设:G={A1,A2,A3,…….,AN;U1,U2, U3,…………,UN}⏹如果存在一个策略组合{a1*, a2*,……,aN*},其中a1*∈A1,a2*∈A2,…….,aN*∈AN,使Ui*=Ui{a1*, a2*,…,aN*} ≥Ui{a1*,…,ai-1*,aij*,ai+1*…,aN*}⏹对任意i ∈N都成立,则{a1*, a2*,……,aN*}为Nash均衡。
囚徒困境坦白B不坦白A 坦白A 不坦白两个被捕的囚徒之间的一种特殊博弈,双方的利益不仅取决于他们自己的策略选择也取决于对方的策略选择。