荧光定量PCR的原理及使用
- 格式:doc
- 大小:153.50 KB
- 文档页数:7
荧光定量PCR原理及应用一、引言荧光定量PCR(Quantitative Polymerase Chain Reaction)是一种广泛应用于生物学和医学领域的分子生物学技术,它能够在短时间内扩增DNA序列并定量测量样品中特定DNA的数量。
本文将深入探讨荧光定量PCR的原理和应用。
二、荧光定量PCR原理2.1 PCR基本原理回顾在了解荧光定量PCR原理前,我们首先回顾一下PCR的基本原理。
PCR是一种通过反复复制DNA片段的技术,它基于DNA复制的三个基本步骤:变性、引物结合和延伸。
1.变性:将DNA加热到95℃,使其两个链分离成单链。
2.引物结合:将温度降至适合引物结合的温度。
引物是针对待扩增的DNA片段设计的短寡核苷酸序列,它们与待扩增片段的两端互补。
引物结合到待扩增片段上。
3.延伸:在适当的酶的作用下,延伸引物,合成互补链。
通过重复这个循环,DNA片段会指数增加。
2.2 荧光定量PCR原理荧光定量PCR在PCR的基础上进行了改进,引入荧光染料和荧光探针。
荧光染料可以与DNA结合并发出荧光信号,荧光探针可以在PCR过程中实时检测DNA的扩增情况。
1.引物设计:荧光定量PCR需要设计两个引物,一个用于扩增目标DNA,另一个用于扩增内参(house-keeping gene),作为对比和标准。
2.荧光染料:在PCR反应体系中添加荧光染料,如SYBR Green。
SYBR Green可以结合到PCR产物的DNA上,并发出荧光信号。
3.荧光探针:荧光定量PCR还可以使用荧光探针,如TaqMan探针。
TaqMan探针是一种特殊的寡核苷酸序列,它含有两个荧光染料(荧光报告染料和荧光阻断染料)和一个酶切位点。
在PCR反应中,当探针与待扩增片段结合时,酶会切除探针,导致荧光信号的降低。
4.实时检测:荧光定量PCR可以实时检测PCR反应体系中的荧光信号。
荧光信号的强度与PCR产物的数量成正比,通过检测荧光信号的变化,可以定量测量待扩增片段的数量。
荧光定量pcr的原理方法
荧光定量PCR(Fluorescent Quantitative PCR,qPCR)是一种用荧光信号量化检测PCR产物的方法,用于定量分析目标DNA或RNA的含量。
荧光定量PCR的基本原理如下:
1.引物设计:设计特异性引物,使其能够特异性地扩增目标DNA或RNA序列。
2.模板DNA或RNA的提取:从样品中提取目标DNA或RNA。
3.cDNA合成:对于RNA样品,需要首先将RNA反转录成cDNA,作为PCR 的模板。
4.Real-time PCR扩增反应:将模板DNA或cDNA与引物和荧光探针一起加入PCR反应体系中,进行实时PCR扩增。
PCR反应体系中还包括核苷酸,聚合酶和缓冲液等。
5.荧光信号检测:随着PCR的进行,荧光探针被解旋成单链,释放出与之配对的荧光染料。
荧光染料产生荧光信号,信号强度与扩增产物的数量成正比。
6.荧光信号检测系统:荧光信号检测系统实时检测PCR反应体系中的荧光信号,并将其转换成数值。
7.标准曲线绘制:通过使用已知浓度的标准品进行一系列稀释,绘制出标准曲线。
标准曲线将荧光信号强度与目标DNA或RNA的初始浓度之间建立了一个标准关系。
8.样品定量:通过对样品的荧光信号强度进行测量,并使用标准曲线进行插值计算,确定样品中目标DNA或RNA的初始浓度。
荧光定量PCR具有高灵敏度、高特异性、宽动态范围、低检测限和快速分析等优点,广泛应用于分子生物学和疾病诊断等领域。
1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用
荧光定量PCR是一种在PCR反应过程中,通过荧光信号的检测来对PCR产物进行实时定量分析的技术。
1. 原理:
荧光定量PCR利用荧光染料或者荧光探针,标记扩增过程中的每一个循环的产物,这些荧光标记的产物在激发光的作用下会发出荧光。
随着反应的进行,PCR产物不断累积,荧光信号也随之增强。
通过对荧光信号的实时监测,可以推断出样本中起始模板的数量。
2. 方法:
主要方法包括探针法、SYBR Green I染料法和分子信标法等。
探针法使用与目标序列特异性结合的荧光探针来标记PCR产物。
SYBR Green I染料法则是利用染料与双链DNA的结合特性,将染料添加到反应体系中,随着PCR产物的增加,染料的荧光信号也增强。
3. 注意事项:
荧光定量PCR对样品纯度要求较高,应避免杂质的干扰。
反应体系中的成分和浓度需要精确控制,以确保实验结果的准确性。
荧光定量PCR的结果解读需要参考标准曲线,以确定未知样本中的目标序列数量。
4. 在临床与科研中的应用:
在临床应用中,荧光定量PCR被广泛用于病原体检测、基因突变分析、遗传病诊断以及癌症研究等。
例如,用于检测病毒如HIV、HBV等的载量,或者检测癌症相关基因的表达水平。
在科研领域,荧光定量PCR可用于基因表达分析、基因组学和表观遗传学研究中。
例如,比较不同组织或细胞类型的基因表达差异,或者研究表观遗传修饰对基因表达的影响。
总的来说,荧光定量PCR技术是一种高灵敏度、高特异性的核酸定量分析方法,对于临床诊断和科学研究具有重要意义。
荧光定量pcr实验原理与应用荧光定量PCR(qPCR)是一种广泛应用于分子生物学和遗传学研究中的技术。
它利用荧光探针或荧光染料来实现对PCR产物的定量,从而测量样品中相应基因的拷贝数。
本文将介绍qPCR的原理、步骤以及应用。
qPCR的原理:qPCR利用PCR反应体系中的DNA聚合酶,在不断复制DNA的过程中将荧光探针或荧光染料标记的探针与靶标DNA结合,并释放荧光信号量。
PCR反应过程中,荧光强度与反应体系中的DNA 量成正比。
通过荧光信号的强度,可以在PCR反应结束后测量靶标DNA的数量。
qPCR的步骤:qPCR主要分为两个步骤:反应体系的制备和实验操作。
反应体系的制备:反应体系中主要包括模板DNA、引物和荧光探针等。
引物是两个齐端互补的DNA片段,能够在相应的温度下与模板DNA进行互补配对,从而在PCR反应中扩增目标DNA片段。
荧光探针是一种含有荧光染料和荧光猝灭剂的DNA分子,可以与PCR产物的靶标DNA结合,通过荧光信号来定量PCR产物。
实验操作:qPCR的实验操作包括PCR反应的设置和荧光信号的测量。
在PCR 反应中,引物和荧光探针与模板DNA结合,通过PCR反应体系中的DNA聚合酶进行扩增。
在PCR反应结束后,通过荧光信号的测量来定量PCR产物。
荧光信号可以通过实时荧光定量PCR仪器进行测量。
qPCR的应用:qPCR在分子生物学和遗传学研究中有着广泛的应用。
例如:1.基因表达分析:qPCR可以对特定基因的表达进行定量,从而研究基因的表达模式和变化。
2.病毒和微生物检测:qPCR可以检测病毒和微生物的DNA/RNA,从而进行快速和准确的病原体检测。
3.遗传疾病的诊断:qPCR可以检测遗传疾病相关基因的突变和拷贝数变化,从而进行遗传疾病的诊断。
4.转基因生物检测:qPCR可以对转基因生物中外源基因的拷贝数进行检测,从而进行转基因生物的鉴定和检测。
qPCR是一种快速、准确、可重复的分子生物学技术,广泛应用于遗传学、生物医学、环境科学和农业等领域。
荧光定量pcr实验原理与应用荧光定量PCR(qPCR)是一种高灵敏度、高特异性的DNA扩增技术,通过检测PCR反应体系中的荧光信号实时监测DNA的合成量。
这种技术结合了传统PCR的高效性和荧光探针的高度特异性,广泛应用于基因表达分析、病原体检测、基因定量、基因型鉴定等领域。
一、原理荧光定量PCR利用荧光信号与PCR产物数量呈正比的原理,通过实时监测PCR反应过程中荧光信号的强度变化来确定反应体系中模板DNA的初始量。
在PCR反应中,荧光探针与特定的DNA序列结合,并发出荧光信号。
随着PCR反应的进行,产物数量逐渐增加,荧光信号也随之增加。
通过检测荧光信号的增长曲线,可以确定初始模板DNA的数量。
二、应用1.基因表达分析:荧光定量PCR可用于实时监测基因的表达水平,通过检测靶基因的mRNA量来研究基因在不同条件下的表达情况。
2.病原体检测:荧光定量PCR可用于快速准确地检测病原体的存在,如病毒、细菌等,对临床诊断和疾病监测具有重要意义。
3.基因定量:荧光定量PCR可用于定量分析基因拷贝数、基因表达水平等,对基因功能研究和疾病诊断有重要作用。
4.基因型鉴定:荧光定量PCR可用于检测基因型多态性,如单核苷酸多态性(SNP)、插入缺失等,用于遗传学研究和个体鉴定。
三、优势与传统PCR技术相比,荧光定量PCR具有以下优势:1.高灵敏度:荧光信号与PCR产物数量呈正比,可实现低拷贝数DNA的检测。
2.高特异性:荧光探针设计精准,可准确识别靶基因序列,避免非特异性扩增。
3.实时监测:可实时监测PCR反应过程中的荧光信号,得到实时、准确的反应动态信息。
4.高准确性:荧光定量PCR结果稳定可靠,可用于定量分析和比较研究。
荧光定量PCR作为一种高效、高灵敏的DNA定量技术,在生命科学研究、临床诊断、食品安全监测等领域具有广泛应用前景。
随着技术的不断发展和完善,荧光定量PCR将在更多领域发挥重要作用,为科学研究和临床实践提供强有力的支持。
荧光定量PCR的原理及应用荧光定量聚合酶链反应(qPCR)是一种基于荧光信号的分子生物学技术,用于定量检测目标DNA序列的数量。
它结合了传统的聚合酶链反应(PCR)技术和荧光探针技术,通过检测盘细胞PCR扩增过程中产生的荧光信号的数量来确定目标序列的初始模板DNA的量。
以下是荧光定量PCR的原理和应用相关内容。
1.原理:荧光定量PCR基于PCR扩增技术,通过DNA的双链不断不断的分离和扩增,形成指数级别的增加,从而使DNA数量可检测,实现定量的目标DNA检测。
在PCR反应体系中加入DNA荧光探针,该探针含有一个荧光染料和一个阻断器。
在PCR反应中,荧光探针与引物结合,并通过荧光染料发射荧光信号。
当引物与靶DNA序列结合时,即在扩增成产物的过程中,荧光探针被水解,导致发射的荧光不再受到阻断器的遮挡,荧光信号显著增加。
通过检测PCR反应中荧光信号的强度,来确定目标序列的初始模板DNA量。
2.应用:(1)基因表达分析:荧光定量PCR可用于分析特定基因在不同组织、细胞类型或疾病状态下的表达水平差异。
通过测量目标基因的荧光信号,可以定量表达水平。
(2)病原体检测:荧光定量PCR可用于检测并定量常见病原体的存在。
例如,通过检测病毒或细菌的DNA或RNA来确定其感染程度。
(3)遗传疾病诊断:荧光定量PCR可用于检测一些遗传疾病相关基因突变的存在,并定量突变的数量。
(4)细菌或病毒负荷检测:在一些感染疾病的监测中,荧光定量PCR可用于检测和定量病菌或病毒在患者体内的负荷,可用于监测治疗效果。
(5)环境微生物分析:荧光定量PCR可用于分析和定量土壤、水样和空气等环境中的微生物(如细菌、真菌和病毒)的存在和变化。
(6)转基因分析:在转基因研究中,荧光定量PCR可用于检测和定量外源基因的存在并分析其表达水平。
(7)单细胞分析:荧光定量PCR可用于对单个细胞中目标基因或突变的检测和定量。
这对于研究单细胞的异质性和功能以及肿瘤细胞的进化和耐药性等方面的研究具有重要意义。
荧光定量PCR的原理及应用1. 荧光定量PCR的原理荧光定量PCR(Quantitative PCR,简称qPCR)是一种能够准确测量DNA模板数量的分子生物学技术。
它是传统PCR技术的一种改进和发展,通过引入荧光探针来实现DNA模板的定量测量。
1.1 PCR的基本原理PCR是一种在体外复制DNA的方法,它是由DNA的三个步骤循环不断重复而实现的。
这三个步骤分别是变性、退火和延伸。
•变性:将反应体系中的DNA加热至95°C,使其双链DNA解链成两条单链。
•退火:降温至较低的温度,使引物(引导复制的短链DNA)与目标序列特异性结合。
•延伸:在适宜的温度下,DNA聚合酶进行DNA链的合成。
1.2 荧光定量PCR的原理荧光定量PCR在PCR的基础上引入了荧光探针,通过测量PCR反应产生的荧光信号来实现DNA模板的定量。
•引物:在荧光定量PCR中,通常需要设计一对引物,一个为前向引物,一个为反向引物。
引物的选择应具有高度特异性,能够特异性地与目标DNA序列结合。
•荧光探针:荧光探针是一种含有荧光染料和荧光猝灭剂的双标记探针。
当荧光探针与其靶序列结合时,荧光染料和猝灭剂之间的距离变远,荧光信号被释放出来,可以被测量到。
荧光定量PCR的原理是基于荧光探针的特性。
在PCR反应中,引物与荧光探针特异性结合目标DNA序列,DNA聚合酶在合成DNA链的过程中会加上荧光探针。
当PCR反应进行时,荧光探针结合的DNA链会被逐渐增加,荧光信号也会相应增强。
通过实时测量PCR反应体系中荧光信号的强度,可以推断出目标DNA序列的起始数量。
2. 荧光定量PCR的应用荧光定量PCR在现代生物学研究中广泛应用于许多领域。
以下是一些主要的应用范围:2.1 基因表达分析荧光定量PCR可以用于研究基因的表达水平。
通过测量不同样品中特定基因的mRNA复制数目,可以判断该基因在不同生物样品中的表达水平差异。
这对于研究基因功能、寻找治疗靶点以及评估药物的有效性都具有重要意义。
荧光定量pcr实验原理与应用荧光定量PCR(Polymerase Chain Reaction)是一种基于PCR技术的一种变种,它利用荧光探针实现对PCR产物的定量检测。
荧光定量PCR结合了PCR扩增和实时荧光检测技术,能够快速、准确地检测目标DNA的含量。
本文将介绍荧光定量PCR的原理及其在科研和临床应用中的重要性。
一、荧光定量PCR的原理荧光定量PCR的原理基本与常规PCR相似,也包括三个步骤:变性、退火和延伸。
其区别在于,在PCR反应体系中加入了含有荧光素的探针,这些探针与目标DNA序列特异性结合,并在PCR反应中被DNA聚合酶酶切,导致荧光信号的释放。
在PCR反应进行过程中,荧光信号与PCR产物量成正比,通过检测荧光信号的强度,可以实时监测PCR反应的进程,从而实现对目标DNA的定量检测。
荧光定量PCR可以通过不同的荧光探针来检测多个靶标,实现多重PCR检测。
二、荧光定量PCR的应用1. 病原微生物检测:荧光定量PCR广泛应用于病原微生物的检测,包括细菌、病毒、真菌等。
通过荧光定量PCR技术,可以实现对微生物的快速、准确的检测,有助于早期诊断和治疗。
2. 癌症诊断:荧光定量PCR可用于癌症早期筛查和诊断。
通过检测癌基因的表达水平,可以帮助医生判断肿瘤的类型、分级和预后,指导个体化治疗方案。
3. 遗传病检测:荧光定量PCR可用于遗传病的基因检测。
通过对患者DNA样本进行荧光定量PCR分析,可以准确检测遗传突变,帮助家庭规划和遗传咨询。
4. 食品安全监测:荧光定量PCR可以用于食品中致病微生物和转基因成分的检测。
通过对食品样品中目标DNA的定量检测,可以确保食品安全,保障公众健康。
5. 环境微生物监测:荧光定量PCR可用于环境微生物的监测和鉴定。
通过对环境样品中微生物的定量检测,可以了解微生物种类和数量,指导环境保护和生态恢复工作。
荧光定量PCR作为一种高灵敏、高特异性的分子生物学技术,在医学、生物学、食品安全和环境科学等领域发挥着重要作用。
荧光定量pcr 的基本原理和步骤-回复荧光定量PCR(Quantitative Polymerase Chain Reaction,qPCR)是一种常用于检测和定量DNA或RNA的方法。
它基于传统PCR技术,但在PCR反应中使用了特殊的荧光标记物,并且通过荧光信号的变化来测定目标分子的数量。
本文将详细介绍荧光定量PCR的基本原理和步骤。
一、基本原理:荧光定量PCR的核心原理是在PCR反应过程中,通过检测荧光信号的强度来确定目标分子的数量。
这种荧光信号可以来自于反应过程中特定的荧光探针或染料,也可以来自于PCR产物的累积。
荧光定量PCR通常基于特异性扩增和靶向检测的原则。
首先,通过引物的设计,选择特异性的引物来扩增目标序列。
然后,在PCR反应中加入荧光标记的引物或探针,使其与目标序列结合,并发出荧光信号。
荧光信号的强度与PCR产物的数量成正比,通过与标准曲线比较可以确定初始目标分子的数量。
二、步骤说明:1. 样品准备:首先,从样品中提取目标DNA或RNA,并对其进行纯化和浓缩。
样品的质量和纯度对于后续的PCR反应和荧光信号的准确性至关重要。
2. 引物设计:根据目标序列的特点,设计适当的引物。
引物的选择应考虑到其特异性、长度、GC含量、3’末端的稳定性等因素。
此外,还可以设计一对引物和一个荧光标记的探针,以提高PCR反应的特异性和灵敏度。
3. PCR反应体系:准备PCR反应的体系。
体系中通常包括模板DNA或RNA、引物、荧光标记物、酶、缓冲液和dNTPs等。
酶的选择通常是Taq DNA聚合酶,其在PCR反应温度下活性稳定。
4. PCR反应:在PCR仪中设定合适的温度参数,按照以下程序进行PCR 反应:变性(Denaturation)→退火(Annealing)→延伸(Extension)。
这个循环通常要重复多次,以扩增目标序列。
5. 荧光信号检测:在PCR反应过程中,可以使用实时荧光PCR仪,以实时监测PCR产物的荧光信号强度。
荧光定量PCR技术原理与结果分析荧光定量PCR(qPCR)是一种广泛应用于分子生物学的实验技术,可以对DNA或RNA目标序列进行定量分析。
本文将介绍荧光定量PCR的原理和结果分析,包括实验步骤、PCR曲线的解读以及测定目标序列的相对表达水平等。
一、荧光定量PCR的原理荧光定量PCR技术主要基于PCR的原理,即通过模板DNA的逐渐扩增,来定量分析起始模板DNA或RNA的数量。
在实验中,荧光定量PCR通常使用DNA合成酶来合成目标序列的拷贝,通过在每个扩增周期后测量荧光信号的变化,来定量反应的进程。
1.准备试剂和反应体系:包括引物、合成的目标序列等。
2.PCR反应:在热循环PCR仪中,通过一系列不同温度的循环,使模板DNA的扩增合成逐渐发生。
3.荧光信号检测:通过在每个循环后侦测荧光信号的变化,来定量PCR反应的进程和模板DNA的数量。
4.数据分析:通过荧光信号的变化来计算模板DNA或RNA的相对表达水平。
二、荧光定量PCR结果分析1.PCR曲线的解读在荧光定量PCR反应中,通常会绘制荧光信号与PCR循环数的关系图即PCR曲线。
根据PCR曲线的形状,可以得到以下几个关键结果:(1)阈值循环数(Ct):阈值循环数是PCR曲线上荧光信号超过背景信号的循环数。
Ct值越小,目标序列的初始模板数量越多。
(2) 扩增效率(Efficiency):扩增效率可以通过计算PCR曲线斜率的反向值得到,通常表达为百分比。
扩增效率越高,说明PCR反应的有效性越好。
(3)Ct值偏移:Ct值偏移是指实验组与对照组(如阴性对照或基准组)之间的Ct值差异。
Ct值偏移的大小可以用于计算相对表达水平。
2.相对表达水平的测定相对表达水平是指在不同实验条件下,目标序列在不同组织或细胞中的表达量相对比较和定量分析。
常用的计算方法有:(1)∆∆Ct法:通过计算实验组与对照组的相对Ct值差异来获得相对表达水平。
∆∆Ct值越大,目标序列的表达水平差异越明显。
荧光定量PCR原理及实验步骤
一、实时荧光定量PCR原理
常规PCR技术对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准确定量,无法对扩增反应实时检测。
实时定量PCR技术,在PCR反应体系中加入荧光基团,利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct值和标准曲线的分析对起始模板进行定量分析。
几个概念:
(1)扩增曲线:
(2)荧光阈值:
(3)Ct值:
(4)标准曲线
SYBR Green工作原理:
1、SYBR Green 能结合到双链DNA的小沟部位
2、SYBR Green 只有和双链DNA结合后才发荧光
3、变性时,DNA双链分开,无荧光
4、复性和延伸时,形成双链DNA,SYBR Green 发荧光,在此阶段采集荧光
信号。
二、实验步骤
1. 实验前先在大型仪器共享平台上预约多元荧光定量PCR仪。
1、将所需引物和SYBgreen(避光)拿出,解冻。
计算好所有引物和SYBgreen
的用量。
2、反应体系(25μL)如下:
H2O 11μL
SYBgreen 12.5Μl
上游引物0.25μL
下游引物0.25μL
cDNA 1μL
可先将H2O 和SYBgreen按照所需量配好后,分装,再根据需要加引物和模板。
4、加完所有试剂后,盖上盖子,混匀,离心。
上机。
荧光定量pcr原理及应用一、前言荧光定量PCR是一种利用荧光信号来检测PCR产物的技术,它可以实现对PCR反应过程中DNA扩增产物的实时监测和定量。
本文将从PCR反应原理、荧光探针设计、实验操作步骤、数据分析等方面详细介绍荧光定量PCR的原理及应用。
二、PCR反应原理PCR是一种体外人工合成DNA的技术,它通过模拟自然界中的DNA 复制机制,使DNA序列在体外得到扩增。
在PCR反应中,需要使用两个引物(primer)和一个DNA模板进行扩增。
引物是特异性的寡核苷酸序列,在反向转录和扩增过程中与目标序列互补结合,作为起始位点进行扩增。
引物的设计需要考虑到目标序列的长度、GC含量、互补性等因素。
PCR反应分为三个步骤:变性、退火和延伸。
变性步骤将DNA双链解旋成单链,使引物可以与模板结合;退火步骤使引物与模板形成稳定的复合物;延伸步骤则通过加入Taq聚合酶及其所需离子和碱基三磷酸,使引物向3’端延伸,合成新的DNA链。
三、荧光探针设计荧光定量PCR需要使用荧光探针来检测PCR产物。
荧光探针是一种含有荧光染料和靶向序列的寡核苷酸探针,它可以与PCR产物特异性结合,并在结合后释放出荧光信号。
常用的荧光探针有Taqpman、MGB、Scorpion等。
荧光探针的设计需要考虑到靶向序列的长度、GC含量、互补性等因素。
同时,还需要选择适当的荧光染料和非荧光淬灭剂对,以达到最佳检测效果。
常用的荧光染料包括FAM、ROX、VIC等,非荧光淬灭剂则包括BHQ1、Iowa Black FQ等。
四、实验操作步骤1. 样品提取:从样品中提取目标DNA,并进行纯化。
2. PCR反应:将目标DNA与引物和Taq聚合酶一起加入PCR反应体系中进行扩增。
3. 荧光探针加入:在PCR反应体系中加入特异性结合PCR产物的荧光探针。
4. 荧光信号检测:在PCR反应过程中,使用荧光定量PCR仪对荧光信号进行实时监测和定量分析。
五、数据分析荧光定量PCR的数据分析主要包括荧光曲线分析和标准曲线法分析。
简述荧光定量PCR的原理及应用1. 荧光定量PCR的原理荧光定量聚合酶链式反应(quantitative polymerase chain reaction,qPCR)是一种通过荧光信号来定量测量PCR反应产物数量的方法。
它是PCR技术的一种变体,通过引入荧光染料来实现高灵敏度和高特异性的DNA检测和定量。
荧光定量PCR的主要原理如下:1.1 反应物准备首先,需要准备PCR反应体系,包括DNA模板、引物(primer)、核酸酶、核苷酸三磷酸酶(polymerase)、适当的缓冲液和荧光探针。
其中荧光探针是关键,它在PCR反应过程中与目标DNA序列特异性结合,并通过荧光信号的产生反映PCR产物的数量。
1.2 PCR反应过程PCR反应由若干个循环组成,每个循环包括DNA的变性、引物的结合和延伸,以及荧光探针的结合和信号发生。
具体步骤如下:1.反应体系加热至94°C,使DNA模板变性为单链。
2.使反应体系温度降低至引物的退火温度,使引物与单链DNA特异性结合。
3.延伸阶段,引物提供的3’端作为DNA的起始点,并与DNA模板的互补碱基配对,聚合酶在此基础上合成新的DNA链。
4.荧光探针降解为引物,释放出一个荧光信号。
5.利用PCR仪测量荧光信号的强度,并与已知浓度的标准品进行比较,从而计算出待测样品中目标DNA序列的含量。
2. 荧光定量PCR的应用荧光定量PCR广泛应用于各个领域的生物研究和临床诊断中。
以下列举了一些常见的应用:2.1 基因表达分析荧光定量PCR可用于测量目标基因在不同组织、细胞或生物样品中的表达水平。
通过定量PCR可以准确测量少量目标基因的RNA表达,从而比较不同条件下基因的表达差异。
2.2 病原微生物检测荧光定量PCR在病原微生物的快速检测和定量分析中具有重要作用。
例如,可以用荧光定量PCR检测病原体感染引起的特定基因片段的存在和数量,从而诊断疾病。
2.3 突变分析荧光定量PCR也可以用于检测基因的突变。
荧光定量PCR的原理及使用荧光定量PCR(FQ-PCR)是新近出现的一种定量PCR检测方法。
其基本特点是:1、用产生荧光信号的指示剂显示扩增产物的量。
2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性和精确性。
3、动态实时连续荧光检测,免除了标本和产物的污染,且无复杂的产物后续处理过程,高效、快速。
下面介绍常用的几种检测方法:1、双链DNA内插染料某些染料如SYBR GreenⅠ能选择性地与双链DNA结合,同时产生强烈荧光。
在PCR过程中SYBR GreenⅠ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。
SYBR Green I荧光染料技术原理SYBR Green I是一种只与DNA双链结合的荧光染料。
当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。
因此,在一个体系内,其信号强度代表了双链DNA分子的数量。
SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green 染料与DNA双链结合时发出荧光。
2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。
3、在聚合延伸过程中,引物退火并形成PCR产物。
4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。
SYBR Green I荧光染料与DNA双链的结合SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。
要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性和PCR反应的质量要求就比较高。
在此前提下,本法是一种成本低廉的选择。
2、TaqMan探针技术原理TaqMan探针法是高度特异的定量PCR技术,其核心是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。
由于探针与模板是特异性结合,所以荧光信号的强弱就代表了模板的数量。
荧光定量PCR的原理及使用
荧光定量PCR(FQ-PCR)是新近出现的一种定量PCR检测方法。
其基本特点是:1、用产生荧光信号的指示剂显示扩增产物的量。
2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性和精确性。
3、动态实时连续荧光检测,免除了标本和产物的污染,且无复杂的产物后续处理过程,高效、快速。
下面介绍常用的几种检测方法:
1、双链DNA内插染料
某些染料如SYBR GreenⅠ能选择性地与双链DNA结合,同时产生强烈荧光。
在PCR过程中SYBR GreenⅠ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。
SYBR Green I荧光染料技术原理SYBR Green I是一种只与DNA双链结合的荧光染料。
当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。
因此,在一个体系内,其信号强度代表了双链DNA分子的数量。
SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green 染料与DNA双链结合时发出荧光。
2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。
3、在聚合延伸过程中,引物退火并形成PCR产物。
4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。
SYBR Green I荧光染料与DNA双链的结合
SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。
要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性和PCR反应的质量要求就比较高。
在此前提下,本法
是一种成本低廉的选择。
2、TaqMan探针技术原理
TaqMan探针法是高度特异的定量PCR技术,其核心是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。
由于探针与模板是特异性结合,所以荧光信号的强弱就代表了模板的数量。
在TaqMan探针法的定量PCR反应体系中,包括一对PCR引物和一条探针。
探针只与模板特异性地结合,其结合位点在两条引物之间。
探针的5′端标记有报告基团(Reporter, R),如FAM、VIC 等,3′端标记有荧光淬灭基团(Quencher, Q),如TAMRA等。
当探针完整的时候,报告基团所发射的荧光能量被淬灭基团吸收,仪器检测不到信号。
随着PCR 的进行,Taq酶在链延伸过程中遇到与模板结合的探针,其5′→3′外切核酸酶活性就会将探针切断,报告基团远离淬灭基团,其能量不能被吸收,即产生荧光信号。
所以,每经过一个PCR循环,荧光信号也和目的片段一样,有一个同步
指数增长的过程。
信号的强度就代表了模板DNA的拷贝数。
5,TaqMan探针的荧光信号产生机制
根据其3′端标记的荧光淬灭基团的不同分为两种:普通的TaqMan探针和TaqMan MGB探针。
MGB探针的淬灭基团采用非荧光淬灭基团(Non-Fluorescent Quencher),本身不产生荧光,可以大大降低本底信号的强度。
同时探针上还连接有MGB (Minor Groove Binder)修饰基团,可以将探针的Tm值提高10°C左右。
因此为了获得同样的Tm值,MGB探针可以比普通TaqMan探针设计得更短,既降低了合成成本,也使得探针设计的成功率大为提高。
因为在模板的DNA 碱基组成不理想的情况下,短的探针比长的更容易设计。
实验证明,TaqMan MGB 探针对于富含A/T的模板可以区分得更为理想。
TaqMan MGB探针
探针设计一般应符合以下条件:1、探针长度应在20~40个碱基左右,以保证结合的特异性。
2、G、C碱基含量在40%-60%,避免单核苷酸序列的重复。
3、避免与引物发生杂交或重叠。
4、探针与模板结合的稳定程度要大于引物与模板结合的稳定程度,因此探针的Tm值要比引物的Tm值至少高出5℃。
3、分子信标技术
分子信标技术(molecular beacon)也是在同一探针的两末端分别标记荧光分子和淬灭分子,与TaqMan探针不同的是该探针5′和3′末端自身可形成一个8个碱基左右的发卡结构,此时荧光分子和淬灭分子邻近,因此不会产生荧光。
当溶液中有特异模板时,该探针与模板杂交,从而破坏了探针的发卡结构即FRET消失,于是溶液便产生荧光,荧光的强度与溶液中模板的量成正比,因此可用于PCR定量分析。
Ct 值的含义是:每个反应管内的荧光信号达到设定的域值时所经历的循环数。
研究表明,每个模板的Ct 值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。
利用已知起始拷贝数的标准品可作出标准曲线,因此只要获得未知样品的Ct 值,即可从标准曲线上计算出该样品的起始拷贝数。
1、双链DNA内插染料
常用的是SYBR Green I荧光染料,其技术原理:SYBR Green I是一种只与DNA双链结合的荧光染料。
当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。
因此,在一个体系内,其信号强度代表了双链DNA分子的数量。
SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green染料与DNA双链结合时发出荧光。
2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。
3、在聚合延伸过程中,引物退火并形成PCR产物。
4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的
净增量加大。
荧光染料检测法一般主要是利用荧光染料(如SYBR Green I)与双链DNA分子结合发光的特性来指示扩增产物的增加,优点是:无需另外设计荧光探针,无需特别优化条件,简便易行,成本较低,能适用于任何一款定量PCR仪。
荧光染料法实质上是常规的PCR反应中添加了荧光染料,借助染料和双链DNA的结合所发出的荧光实时监控反应的进程。
由于不需要设计序列特异性探针和优化反应条件,价格低廉,通用性强,而且荧光染料法可用于任何一种型号的定量PCR仪,因而同样得到广泛采用。
在PCR反应体系中,加入过量SYBR Green I荧光染料,SYBR荧光染料掺入DNA双链后荧光信号显著增强;当DNA变性时SYBR Green I染料释放出来,荧光急剧减少;随后在聚合延伸过程中引物退火并形成PCR产物,SYBR Green染料与双链产物结合,经检测获得荧光的净增量。
荧光信号的增加与PCR产物的增加完全同步。
荧光染料可以在反应末尾对扩增产物进行溶解,称为溶解曲线分析。
在溶解曲线分析过程中,随着温度从低于产物溶解点缓慢升到高于产物溶解点,定量PCR仪连续监测每个样品的荧光值。
基于产物长度和G/C含量的不同,扩增产物会在不同的温度点解链。
随着产物的解链就可以看到荧光值的降低并被仪器所测量。
对溶解曲线进行微分可以计算出溶解峰。
溶解峰可以反映反应中扩增到的
产物,因此用溶解曲线数据就可以进行定量检测了。
的RNA模板做10倍倍比稀释后,用紫外分光光度计测定其浓度,将强毒株H
2
然后按下面的公式转换成模板的拷贝数:拷贝数=NDV模板浓度×阿氏常数/(一个碱基的平均分子量×NDV模板的总长度)其中,阿氏常数为6.02×1023,一个碱基的平均分子量为324.5,NDV模板的总长度为15 186 bp,标准品的RNA模板分别进行10-1、10-2 、10-3、10-4、10-5、10-6、10-7稀释后,用紫外分光光度计测定病毒RNA模板的OD值,分别计算其浓度,用于制作标准曲线,同时做一个阴性对照。