水泥熟料冷却机PPT
- 格式:ppt
- 大小:289.00 KB
- 文档页数:27
冷却窑的工作原理
冷却窑是水泥生产线上的一种设备,用于冷却水泥熟料。
其主要工作原理是通过将高温的水泥熟料置于冷却窑中,利用冷却窑内高效的气流循环系统将熟料迅速降温,从而实现对水泥熟料的冷却作用。
具体工作原理可以归纳为以下几个方面。
1. 熟料进料
水泥熟料从回转窑中流出,通过链斗机将熟料输送到冷却窑进料口,进入冷却窑的过程也是熟料开始冷却的过程。
2. 冷却窑内气流循环
冷却窑内设有气流循环系统,通过风机引导冷却窑内的气流,从而形成高效的气流循环。
这样一来,熟料在窑内不断滚动和翻动,最大程度地接触窑内循环气流,使其快速降温。
3. 锅炉底部布风板
在冷却窑的锅炉底部设置有布风板,通过这个装置我们可以将冷却窑的气流分流,从而使得熟料在窑内得到更加均匀的冷却,不同位置的熟料不会出现过度冷却的情况。
4. 冷却窑出料
经过冷却窑内高效的冷却作用后,水泥熟料流向窑尾,并通过出料口被输送到下一工段。
在冷却窑出料口,安装有过热风冷器,用于将一部分熟料余热回收,保证后续工序的高效运行。
总的来说,冷却窑是水泥生产线上不可或缺的一种设备,它通过高效的气流循环系统,将高温的水泥熟料迅速冷却,从而保证了水泥生产过程中的安全和高效。
水泥熟料冷却机的作用
水泥熟料冷却机是一种热交换装置,它在水泥生产过程中起着至关重要的作用。
以下是它的主要作用:
骤冷高温熟料:水泥熟料从回转窑中出来时,温度高达约1200℃。
熟料冷却机的主要任务是将这些高温熟料迅速冷却至60~80℃。
这种骤冷过程可以防止熟料矿物晶体的进一步生长,特别是C3S晶体的长大,从而改善熟料的强度和易磨性。
同时,骤冷还有助于使液相凝固成玻璃体,使MgO及C3A大部分固定在玻璃体内,提高熟料的安定性和抗化学侵蚀能力。
回收热量:冷却机在骤冷熟料的同时,还负责加热和升温入窑的二次风和入炉的三次风。
这些被高温加热的气体可以作为热源,用于烘干磨或烘干机,或者作为二次风送入窑内燃料燃烧,改善火焰燃烧条件。
此外,它们还可以作为三次风送入分解炉,与窑气混合后供燃料燃烧。
通过这种方式,冷却机有效地回收了熟料中的热量,提高了能源利用效率。
熟料输送:冷却机还作为熟料输送装备,负责将高温熟料从一处输送到另一处。
由于熟料在冷却后变得更加稳定,因此更易于输送和贮存。
综上所述,水泥熟料冷却机在水泥生产过程中起着降低熟料温度、回收热量、提高能源利用效率以及输送熟料的重要作用。
一. 熟料冷却的目的熟料的冷却速率对熟料的结构、熟料的矿物组成,熟料的研磨性能以及水泥 1. 便于输送: 如果输送高温的熟料需要用耐高温材料制造,并且也很容易磨损,造成成本高,维护费用也高,不利于降低成本2. 易于研磨: 熟料冷却速度快,则熟料中的分子没有足够的时间去进行晶格的排列,部份的液相无法结晶成核只有以玻璃质存在,玻璃质较脆,同时矿物颗粒也比较细,易于研磨3. 热量回收: 急冷熟料可以从熟料中回收大量的热,供窑内燃烧所用及余热发电或者是烘干物料。
其回收热量为200-250kcal/kg。
这样就可以降低生产的成本。
4. 改善水泥品质: 熟料在在1250度下,C3S会分解成C2S与CaO两种矿物。
而在525度时,C2S会发生晶格转变,由β-C2S转变成γ-C2S,其体积膨胀10%,造成熟料的粉化,同时γ-C2S又是一种无强度的矿物,使熟料品质下降。
另外熟料在慢冷时矿物中的C3A也会从矿物中析出,造成熟料的急凝现象,MgO在慢冷时也容易结晶,造成水泥的安定性不良。
此时只有用急冷的方法来解决这些问题。
二. 冷却机工作原理冷却机是一种热交换装置,它是以空气为介质从高温的熟料中通过,对熟料进行冷却,同时回收废气的热量作为窑的二次、三次空气及干燥空气,提高窑的热效率。
从热工和工艺角度去评价冷却机的要求有:1.回收的热量要多2.冷却熟料的时间要短,速度要快,特别是在1250与525度3.冷却后熟料的温度要低。
4.冷却单位质量熟料的空气消耗量要少,一般在2-2.1Nm3/h.plate5.结构简单、操作方便、维修容易,运转效率要高随着水泥工业的发展,冷却机的类型非常的多,目前冷却机的主要类型有:1. 单筒式冷却机(旋转式冷却机): 这种冷却机的冷却空气全部入窑,其热效率比较高,结构简单,不需要有废气处理设备。
但熟料的冷却速度慢,出机熟料温度高,二次空气进风不均匀。
2. 多筒式冷却机: 它由环绕在窑壳上的多个圆筒所组成。
建筑材料热工设备水泥窑熟料冷却及设备一、水泥窑熟料冷却机水泥窑熟料冷却机是水泥生产线中的重要设备,用于对窑熟料进行冷却,以降低熟料温度,保证熟料质量和窑炉的正常运行。
冷却机常见的类型有排屑式冷却回转窑、排烟式冷却回转窑和气流型冷却器。
1.排屑式冷却回转窑排屑式冷却回转窑是水泥生产线常用的熟料冷却设备。
其主要组成部分包括料仓、回转炉筒、传动装置、冷却风机等。
窑熟料从水泥窑出口进入回转炉筒,炉筒内设置有梯形板,窑熟料在梯形板上顺坡慢慢向前移动,过程中通过内部冷却装置进行冷却。
冷却后的熟料从回转炉筒底部排出,进入熟料仓进行存储。
2.排烟式冷却回转窑排烟式冷却回转窑是一种利用窑熟料烟气热量进行冷却的设备。
该设备通过将热熟料与烟气进行交换,使得窑熟料得到冷却,同时将热量转移到烟气上。
经过过滤处理的烟气经过热交换器后进入大气中,可以达到节能减排的目的。
二、热交换器热交换器是水泥窑熟料冷却过程中起到关键作用的设备,主要用于高温烟气与窑熟料的热量交换。
常见的热交换器有卧式热交换器和立式热交换器。
卧式热交换器是一种通过将烟气流经管道与窑熟料接触进行热量交换的设备。
熟料与烟气在管道内交替流动,通过传导、对流和辐射等形式的热交换,使得窑熟料冷却,并将热量传递给烟气。
立式热交换器是一种将高温烟气和窑熟料进行交换的设备。
它通常由多个相互平行排列的管束组成,通过管间的传热面积增大,提高传热效率。
热交换器的烟气通道与熟料通道分开,以防止烟气中的灰尘对熟料造成污染。
以上是建筑材料热工设备水泥窑熟料冷却及设备的相关介绍。
水泥窑熟料冷却是水泥生产过程中非常重要的一步,通过合理选择和运用冷却设备和热交换器,可以达到节能降耗、减少排放的目的,提高水泥生产线的效率和品质。
水泥熟料窑系统中冷却带是如何冷却的主要承担熟料的冷却,使熟料中的一部分熔剂矿物C3A、C4AF形成结晶体析出;另一部分熔剂矿物因冷却速度较快来不及析晶而形成玻璃体。
C3S在高温下是一种不稳定的化合物,在1250℃时,容易分解,所以要求熟料自1300℃以下要进行快冷,使C3S来不及分解,越过1250℃以后C3S就比较稳定了。
急速冷却还可以防止C2S在675℃时发生晶型转变,由β- C2S转变为γ—C2S,发生粉化现象(α—C2S在1420℃以下即转变为β—C2S),该带同时回收熟料中的热量加热燃烧用的空气。
冷却带内物料温度为1300一1000℃。
冷却带内熟料冷凝成圆形颗粒后落入冷却机内继续冷却。
回转窑内以上各带不是截然分开的,各带没有明显的界限,而是互相交叉的,随着窑内下料量的多少、温度高低、通风状况、火焰长短等因素而变化。
所以说,窑的长度是一定的,而窑内各带的长度则不一定。
例如当窑尾温度发生变化时,物料的干燥预热必然受到温度变化的影响,干燥预热时间缩短或延长,必然引起其他各带的位移变化而不能固定。
再如CaCO3的分解温度是900℃左右,但在放热反应带仍有剩余的CaCO3在继续分解,同时随着原科性质的不同,反应温度也有差异。
物料在窑内燃烧时,一方面吸热升高温度,另一方面又发生了一系列的物理化学变化,各种变化的热性质不同,使各带物科温度升高速度也不同。
随着新型干法技术的使用和发展,各种窑系统内热力分布状况也不同,它们所具有的反应带分布亦有所不同,其间的传热、传质、动量传递及物理化学反应状况也不同。
在各种窑系统中只有湿法窑在窑内承担了水泥熟料煅烧所有的物理化学反应任务。
回转窑内物料温度和气体温度变化及窑内各带的划分如图4.1所示。
从图4.1可知,在干燥带热气体传给物料热量主要用于蒸发料浆中水分,需要较多的热量,物料升温不快。
在预热带由于物料化学变化,需要吸收热量很少,因此物料温度很快升高。
碳酸盐分解带由于碳酸盆的分解,需要吸收大量的热,所以物料升温速度最慢。
篦式冷却机第一节篦式冷却机的作用及特点熟料冷却机是水泥回转窑的重要配套设备。
没有相应的高效冷却机,就不可能有高效的回转窑。
人们往往单纯地将冷却机看成是冷却熟料的设备,而没有看到它是水泥熟料生产过程中对工艺制度和节能降耗影响很大的工艺设备。
水泥熟料生产过程中预热、煅烧和冷却是三个不可分割的重要环节。
冷却机的作用可概括为以下三个方面:1、回收热量,预热二次空气:冷却机是利用冷空气与高温熟料接触进行热交换,使熟料冷却,而空气被加热,作为二次空气送入回转窑内,供燃料燃烧之用,二次空气含的热量越多,或者在同样发热量的情况下可降低燃料消耗量,使回转窑热耗降低。
2、将从回转窑卸出的高温熟料(约1300℃左右)冷却至尽可能低的温度,便于输送和熟料的储存。
3、高温熟料经急速冷却后,特别是从出窑1300℃和525℃两个温度下要急速冷却易磨性得到改善,有利于粉磨、熟料急速冷却还可阻止熟料矿物晶体的发育,有利于水泥强度的发挥。
同时可提高其抗硫酸盐溶液浸蚀能力,有利于水泥成品的长期安定性。
篦式冷却机的优点如下:1.可使熟料急冷:篦式冷却机较单筒及多筒冷却机冷却物料温度低,一般是环境温度+60℃,特别是它可迅速的使物料温度从1200℃降到300℃以下。
熟料的冷却速度影响着熟料中的晶体与液相量之间的比例,当熟料缓慢冷却时熟料的所有成分几乎都形成晶体;当熟料急速冷却时就会使晶体的形式受到限制而使部分液相凝固成玻璃态。
熟料的冷却速度对制成水泥的安定性也有影响,因水泥的安定性决定于方镁石晶体(氧化镁)的大小,而方镁石晶体的大小又决定于熟料的冷却速度,熟料冷却愈快,其形成的方镁石晶体愈细小。
熟料中的矿物晶体——阿利特晶体也影响水泥的水化和强度,急冷的熟料保持细小的阿利特晶体从而产生较高的水泥强度。
因急冷熟料的液相比例较高,且它的矿物晶体较小,使急冷熟料的粉磨比慢冷熟料要容易得多,此外,熟料急冷还能使水泥的抗酸盐性能得到增强。
见图1-1。