中考一轮复习:第10讲分式方程及其应用
- 格式:ppt
- 大小:668.50 KB
- 文档页数:18
专题10分式方程【考查题型】【知识要点】解分式方程的一般步骤:1)去分母(方程两边同乘最简公分母,约去分母,把分式方程化成整式方程)。
2)解整式方程。
3)验根(把整式方程的解代入最简公分母,情况一:最简公分母为0,则该根不是分式方程的解,这个根叫原分式方程的增根;情况二:若最简公分母不为0,则该根是分式方程的解。
分式的化简求值:1)分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0; 2)灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式;3)化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义。
分式方程解决实际问题的步骤:1)根据题意找等量关系2)设未知数3)列出方程4)解方程,并验根(对解分式方程尤为重要)5) 写答案考查题型一 解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =-题型1-1.(2022·海南·中考真题)分式方程2101x -=-的解是( )A .1x =B .2x =-C .3x =D .3x =-题型1-2.(2022·山东济南·中考真题)代数式32x +与代数式21x -的值相等,则x =______. 题型1-3.(2022·四川内江·中考真题)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x的值为 _____.题型1-4.(2022·湖南永州·中考真题)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______.题型1-5.(2022·湖南常德·中考真题)方程()21522x x x x +=-的解为________.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____. 先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________. 题型1-9.(2022·青海西宁·中考真题)解方程:22430x x x x-=+-.题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=--题型1-11.(2022·青海·中考真题)解分式方程:241244x x x x -=--+.易错点总结:考查题型二 根据分式方程解的情况求值 题型2.(2022·四川德阳·中考真题)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:121222k x x--=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠题型2-3.(2022·重庆·中考真题)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26 B .-24 C .-15 D .-13题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程111(1)x ax x x x ++=++的解为负数,则a 的取值范围是__________. 易错点总结:考查题型三 分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x 的方程221mx x =+无解,则m 的值为( )A .0B .4或6C .6D .0或4题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x 的分式方程2233x a x x++=--无解,则a 的值为( ) A .3B .0C .1-D .0或3题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x mx x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2题型3-3.(2021·西藏·中考真题)若关于x 的分式方程21x x -﹣1=1m x -无解,则m =___. 易错点总结:考查题型四 列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( ) A .3030201.2x x -= B .3030 1.220x x -=- C .3030201.2x x-= D .30301.220x x-=- 题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( ) A .2000020000(115%)10x x ⨯-=-B .2000020000(115%)10x x ⨯-=- C .2000020000(115%)10x x ⨯-=+D .2000020000(115%)10x x⨯-=+ 题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km ,根据题意,所列方程正确的是( ) A .60x ﹣601.5x =3060 B .601.5x ﹣60x =3060 C .60x ﹣601.5x=30 D .601.5x ﹣60x=30题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x亩,则可以得到的方程为()A.363024x x=⨯-B.363024x x=⨯+C.363024x x=⨯-D.363024x x=⨯+题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x万吨,下列算法正确的是()A.4271100%14.0%4271x-⨯=-B.4271100%14.0%4271x-⨯=-C.4271100%14.0%xx-⨯=-D.4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/h,则符合题意的方程是()A.144963030v v=+-B.1449630v v=-C.144963030v v=-+D.1449630v v=+题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.1.482.413xx-=-B.1.482.413xx+=+C.1.4282.4213xx-=-D.1.4282.4213xx+=+题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h ....,则依题意可列方程为( ) A .6110334x x+= B .6102034x x+= C .6101343x x -= D .6102034x x-= 题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( ) A .960010x -=1600xB .960010x +=1600xC .9600x =160010x - D .9600x =1600x+10 题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( ) A .0.9850.75x ⨯= B .0.9850.755x ⨯=+ C .0.7550.98x ⨯=D .0.7550.985x⨯=- 题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x =⨯+- B .900900213x x ⨯=+- C .900900213x x =⨯-+ D .900900213x x ⨯=-+ 题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________. 易错点总结:考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?题型5-3.(2022·山东东营·中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?题型5-4.(2022·贵州安顺·中考真题)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?题型5-5.(2022·贵州铜仁·中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?题型5-6.(2022·湖南益阳·中考真题)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小题型5-7.(2022·吉林长春·中考真题)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?题型5-8.(2022·山东聊城·中考真题)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?题型5-9.(2022·重庆·中考真题)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.题型5-10.(2022·山西·中考真题)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.题型5-11.(2022·四川自贡·中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.考查题型一 解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是( ) A .2x = B .6x =- C .6x = D .2x =-题型1-1.(2022·海南·中考真题)分式方程2101x -=-的解是( ) A .1x = B .2x =- C .3x = D .3x =-题型1-2.(2022·山东济南·中考真题)代数式32x +与代数式21x -的值相等,则x =______. 【答案】7题型1-3.(2022·四川内江·中考真题)对于非零实数a,b,规定a⊕b=11a b-,若(2x﹣1)⊕2=1,则x的值为_____.题型1-4.(2022·湖南永州·中考真题)解分式方程211x x-=+去分母时,方程两边同乘的最简公分母是______.题型1-5.(2022·湖南常德·中考真题)方程()22x x x x +=-的解为________. 【答案】4x =【提示】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解故答案为:4x =【名师点拨】本题考查了解分式方程,解分式方程一定要注意检验.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____. 先化简,再求值:314x x -+-,其中x =解:原式3(4)(4)4x x x x -=⋅-+--34x x =-+-1=-去分母得:3-x +2(x -4)=0,去括号得:3-x +2x -8=0,解得:x =5,经检验,x =5是方程的解,故答案为:5.【名师点拨】本题考查了解分式方程,一定要注意解分式方程必须检验.题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,11ba b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-##0.5-题型1-9.(2022·青海西宁·中考真题)解方程:22430x x x x -=+-. 【答案】7x =【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【名师点拨】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根. 题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=-- 【答案】5x =【提示】先方程两边同时乘以(3)x -,化成整式方程求解,然后再检验分母是否为0即可.【详解】解:方程两边同时乘以(3)x -得到:324x -+=,解出:5x =,当5x =时分式方程的分母不为0,∴分式方程的解为:5x =.【名师点拨】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.题型1-11.(2022·青海·中考真题)解分式方程:241244x x x x -=--+.考查题型二 根据分式方程解的情况求值题型2.(2022·四川德阳·中考真题)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2 【答案】D【提示】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x -1,得2x +a =x -1.解得:x =-a -1且x 为正数.所以-a -1>0,解得a <-1,且a ≠-2.(因为当a =-2时,方程无意义).故答案为:D【名师点拨】本题难度中等,易错点:容易漏掉了a ≠-2这个信息.题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:121222k x x--=--的解为正数,则k 的取值范围为( )A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( )A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠关于题型2-3.(2022·重庆·中考真题)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组411351x x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是( ) A .-26B .-24C .-15D .-13【答案】D 【提示】根据不等式组的解集,确定a >-11,根据分式方程的负整数解,确定a <1,根据分式方程的增根,确定a ≠-2,计算即可.题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程1(1)x x x x +=++的解为负数,则a 的取值范围是__________.关于考查题型三 分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x的方程221mx x=+无解,则m的值为()A.0B.4或6C.6D.0或4原方程无解,题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x的分式方程2233x ax x++=--无解,则a的值为()A.3B.0C.1-D.0或3故选:C .【名师点拨】本题考查了分式方程无解,解题关键是明确分式方程无解的条件,解方程,再根据分母为0列方程.题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2题型3-3.(2021·西藏·中考真题)若关于x 的分式方程21x x -﹣1=1m x -无解,则m =___.考查题型四列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是()A.3030201.2x x-=B.30301.220x x-=-C.3030201.2x x-=D.30301.220x x-=-【详解】解:实际每天接种人数是原计划的又结果提前题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是()A.2000020000(115%)10x x⨯-=-B.2000020000(115%)10x x⨯-=-C.2000020000(115%)10x x⨯-=+D.2000020000(115%)10x x⨯-=+的关键.题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是()A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=30题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x亩,则可以得到的方程为()A.363024x x=⨯-B.363024x x=⨯+C.363024x x=⨯-D.363024x x=⨯+题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x万吨,下列算法正确的是()A.4271100%14.0%4271x-⨯=-B.4271100%14.0%4271x-⨯=-C.4271100%14.0%xx-⨯=-D.4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/h,则符合题意的方程是()A.144963030v v=+-B.1449630v v=-C.144963030v v=-+D.1449630v v=+题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.1.482.413xx-=-B.1.482.413xx+=+C.1.4282.4213xx-=-D.1.4282.4213xx+=+题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h....,则依题意可列方程为()A.6110334x x+=B.6102034x x+=C.6101343x x-=D.6102034x x-=题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是()A .960010x -=1600x B .960010x +=1600x C .9600x =160010x - D .9600x =1600x+10题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( )A .0.9850.75x ⨯=B .0.9850.755x ⨯=+C .0.7550.98x ⨯=D .0.7550.985x⨯=-题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.【名师点拨】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?【答案】(1)笔记本每本12元,钢笔每支10元题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?【答案】(1)篮球的单价为110元,排球的单价为80元(2)最多购买6个篮球【提示】(1)设排球的单价为x元,则篮球的单价为(x+30)元,由题意:330元购进的篮球数量和240元购进的排球数量相等.列出分式方程,解方程即可;(2)设购买排球y个,则购买篮球(20-y)个,由题意:购买篮球和排球的总费用不超过1800元,列出一元一次不等式,解不等式即可.。
第10课时分式方程【知识管理】1.分式方程的概念定义:分母中含的方程叫做分式方程.2.分式方程的解法去分母法:方程两边同乘各分式的,化为方程,再求根、验根.检验方法:解分式方程时,去分母后所得整式方程的解有可能使原主程中分母为0,因此应作如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.换元法:用将原方程变形,然后去分母,化为整式方程,求出新方程的解,最后代入的式子,求方程的根,最后验根.3.列分式方程解决应用问题易错点:列分式方程的应用题要检验两次,第一次是对原方程检验,第二次是对实际意义检验.【典例分析】类型之一分式方程的有关概念例1.关于x的分式方程311x ax x--=-无解,则a= .【点悟】本题主要考查增根的含义,所谓分式方程的增根就是原分式方程化简成整式方程的根,同时又使分式方程分母为零的根.类型之二解分式方程例2.解分式方程:31 2422xx x-=--.【点悟】解分式方程的关键是化分式方程为整式方程,解完整式方程后,不要忘了验根.对于复杂的分式方程中作为整体出现的部分可用换元法,将原方程转化为简易方程,从而求解. 类型之三分式方程的应用例3.如图10-1,点A,B在数轴上,它们所对的数分别是-3和12xx--,且点A,B到原点的距离相等,求x的值.【点悟】(1)数轴上的点到原点的距离用这点所表示的数的绝对值来表示;(2)利用分式方程解决问题,关键是要分析题意,弄清实际意义或几何意义,但求出未知数的值后既要检验根,又要考虑实际意义.【过关训练】一、选择题1.分式方程242xx-=+的根是()A.2-=x B.0=x C.2=x D.无实根2.分式方程312x=-的解是()A.5=x B.1=x C.1-=x D.2=x 3.分式方程131x xx x+=--的解为()A.1=x B.1-=x C.3=x D.3-=x 4.用换元法解分式方程13101x xx x--+=-时,如果设1xyx-=,将原方程化为关于y的整式方程,那么这个整式方程是()A.032=-+yy B.0132=-+yyC.0132=+-yy D.0132=--yy5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+2。
第10课 分式方程及应用【课标要求】1.了解分式方程的概念。
2. 会解分式方程,掌握其基本思想是把分式方程转化为整式方程。
3. 能根据具体问题的实际意义,列分式方程解决实际问题。
【知识要点】1.方程的分类:2.解分式方程的步骤:1、 去分母 化为 整式方程 。
2、解这个 整式方程 。
3、检验。
【典型例题】【例1】解下列方程:(1)11322x x x -=--- (2)22011x x x -=+- 【例2】(1)分式方程112x x =+的解是( ) A. x=1 B. x=-1 C. x=2 D. x=-2 (2)方程22123=-+--xx x 的解是=x __________. (3)当m = 时,关于x 的分式方程213x m x +=--有增根. 【例3】轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_____________________.【例4】某企业组织员工外出旅游,如果单独租用45座客车若干辆,则刚好座满;如果单独租用60座客车,也刚好座满,且可以少租一辆,求该企业参加旅游的人数.【课堂检测】▲1.方程21011x x x-+=--的解是( ) A.2 B.0 C.1 D.3▲2.分式方程992-x -32-x =31+x 的解为( ) A .3 B .-3 C .无解 D .3或-3 ▲3.把分式方程x x 142=+转化为一元一次方程时,方程两边需同乘以( ) A.x B.2x C.x+4 D.x (x+4)▲4.若关于x 的方程2x-2 +x+m 2-x=2有增根,则m 的值是_____ ▲5.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依题意列方程正确的是有理方程分式方程:分母中含有未知数的方程是分式方程。
整式方程 一元一次方程 一元二次方程A .30x =4015x -B .3015x -=40xC .30x =4015x +D .3015x +=40x ▲6.解分式方程:(1)2112323x x x -=-+ (2)21124x x x -=--▲7. A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?▲8.一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
中考数学一轮复习专题解析—分式方程及其应用复习目标1、了解分式方程的概念。
2、会解分式方程,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题。
考点梳理一、分式方程的定义分母中含有未知数的有理方程,叫做分式方程.注意:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.二、分式方程的解法去分母法,换元法.例1、解分式方程:=﹣.【答案】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【解析】解:方程两边同乘以(2x+1)(2x﹣1),得x+1=3(2x-1)-2(2x+1)x+1=2x-5,解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6. 三、解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根. 口诀:“一化二解三检验”. 例2、解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得22(3)1x x -+-=,2261x x -+-=. 5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.注意:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根. 四、解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.例3、甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?【要点诠释】方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意. 综合训练1.(2022·陕西西安市·交大附中分校九年级模拟预测)某修路队计划x 天内铺设铁路120km ,由于采用新技术,每天多铺设铁路3km ,因此提前2天完成计划,根据题意,可列方程为( ) A .12012032x x =+- B .12012032x x=+- C .12012032x x=++ D .12012032x x =++ 【答案】B 【分析】表示出原计划和实际的工作效率,根据采用新技术,每天多铺设铁路3km ,列出方程即可. 【详解】解:原计划每天修建道路120xm ,则实际用了(x ﹣2)天,每天修建道路为1202x -m ,根据采用新技术,每天多铺设铁路3km 得,12012032x x=+-. 故选:B .2.(2022·连云港市新海实验中学九年级二模)甲队3小时完成了工程进度的一半,为了加快进度,乙队也加入进来,两队合作1.2小时完成工程的另一半.设乙队单独完成此项工程需要x 小时,据题意可列出方程为( ) A .1.2 1.216x+= B .1.2 1.213x+= C .1.2 1.2162x += D .1.2 1.2132x += 【答案】C 【分析】根据题意可以得到甲乙两队的工作效率,从而可以得到相应的方程,本题得以解决. 【详解】解:∵甲队3小时完成了工程进度的一半, ∴甲队的工作效率为16设乙队单独完成此项工程需要x 小时, ∴甲队的工作效率为1x由题意可得,1.2 1.2162x +=, 故选:C .3.(2022·哈尔滨市第十七中学校九年级开学考试)分式方程1x x +12x +-=1的解是( ) A .x =1 B .x =﹣1C .x =3D .x =﹣3【答案】A 【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可. 【详解】 解:112x x x ++-=1, 去分母,方程两边同时乘以x (x ﹣2)得: (x +1)(x ﹣2)+x =x (x ﹣2), x 2﹣x ﹣2+x =x 2﹣2x , x =1,经检验,x =1是原分式方程的解. 故选:A .4.(2022·福建省厦门第六中学)某次列车平均提速v km/h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50km ,则方程50ss v xx++= 所表达的等量关系是( )A .提速前列车行驶s km 与提速后行驶(s +50)km 的时间相等B .提速后列车每小时比提速前列车每小时多开v kmC .提速后列车行驶(s +50)km 的时间比提速前列车行驶s km 多v hD .提速后列车用相同的时间可以比提速前多开50km 【答案】B 【分析】根据题意可以知道s +50表示列车提速后同样的时间内行驶的路程,根据路程=速度×时间公式即可得到答案, 【详解】解:∵用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50km ∴s +50表示列车提速后同样的时间内行驶的路程, ∵某次列车平均提速v km/h ,路程=速度×时间 ∴方程50s s v xx++=表达的含义提速后列车每小时比提速前列车每小时多开v km , 故选B.5.(2022·四川巴中·中考真题)关于x 的分式方程2m xx+--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2 B .m ≠﹣2 C .m =2 D .m ≠2【答案】B 【分析】解分式方程得:63m x x +=-即46x m =-,由题意可知2x ≠,即可得到68m -≠. 【详解】 解:302m xx+-=- 方程两边同时乘以2x -得:630m x x +-+=,∴46x m=-,∵分式方程有解,∴20x-≠,∴2x≠,∴68m-≠,∴2m≠-,故选B.6.(2022·全国九年级单元测试)一个不透明的布袋里装有3个红球、2个黑球、若千个白球.从布袋中随机摸出一个球,摸出的球是红球的是概率是310,袋中白球共有()A.3个B.4个C.5个D.6个【答案】C【分析】设白球有x个,根据摸出的球是红球的概率是310,利用概率公式列出方程,解之可得.【详解】设白球有x个,由题意得:33 3210x=++,解得x=5.经检验,x=5是方程的解,故答案为:C.7.(2022·哈尔滨市第六十九中学校九年级一模)分式方程2152x x =+-的解是______. 【答案】9x = 【分析】方程两边都乘(5)(2)x x +-得出2(2)5x x -=+,求出方程的解,再进行检验即可. 【详解】 解:2152x x =+-, 方程两边同乘(5)(2)x x +-,得2(2)5x x -=+, 去括号,得245x x -=+ 移项得:9x =,经检验,9x =是原方程的解, 故答案为:9x =.8.(2022·西安市铁一中学九年级开学考试)若关于x 的分式方程2x x -﹣2=3mx -有增根,则m =___. 【答案】0 【分析】先把分式方程化为整式方程,再根据有增根求出x ,代入求值即可; 【详解】2x x -﹣2=3mx -, ()()()()32232x x x x m x ----=-, 223210122x x x x mx m --+-=-,∴()271220x m x m -+--+=, ∵方程有增根, ∴()()230x x --=, ∴2x =或3x =,当2x =时,41421220m m -+--+=,不存在; 当3x =时,92131220m m -+--+=,解得0m =; 故答案是0.9.(2022·山东济宁学院附属中学九年级期末)某商场准备在济宁义乌批发城采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元. (1)求一件A 、B 型商品的进价分别为多少元?(2)若该商场购进A 、B 型商品共160件进行试销,其中A 型商品的件数不小于B 型的件数,且总成本不能超过24840元,则共有几种进货方案?(3)已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,在第(2)问条件下,哪种方案利润最大?并求出最大利润.【答案】(1)一件A 型商品的进价为160元,一件B 型商品的进价为150元;(2)有5种进货方案;(3)购进84件A 型商品,76件B 型商品时获得的销售利润最大,最大利润为12040元 【分析】(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元,根据数量=总价÷单价结合用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进A型商品m件,则购进B型商品(160-m)件,根据“A型商品的件数不小于B型的件数,且总成本不能超过24840元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各进货方案;(3)利用总利润=每件的利润×销售数量,可分别求出五个进货方案可获得的销售利润,比较后即可得出结论.【详解】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:160007500210x x=⨯+,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160-m)件,依题意得:160160150(160)24840m mm m≥-⎧⎨+-≤⎩,解得:80≤m≤84,又∵m为整数,∴m可以为80,81,82,83,84,∴共有5种进货方案,方案1:购进80件A型商品,80件B型商品;方案2:购进81件A型商品,79件B型商品;方案3:购进82件A型商品,78件B型商品;方案4:购进83件A 型商品,77件B 型商品;方案5:购进84件A 型商品,76件B 型商品.(3)方案1可获得的销售利润为(240-160)×80+(220-150)×80=12000(元);方案2可获得的销售利润为(240-160)×81+(220-150)×79=12010(元);方案3可获得的销售利润为(240-160)×82+(220-150)×78=12020(元);方案4可获得的销售利润为(240-160)×83+(220-150)×77=12030(元);方案5可获得的销售利润为(240-160)×84+(220-150)×76=12040(元).∵12000<12010<12020<12030<12040,∴购进84件A 型商品,76件B 型商品时获得的销售利润最大,最大利润为12040元.10.(2022·重庆实验外国语学校九年级开学考试)解方程: (1)225x x +=;(2)14733x x x-+=--.【答案】(1)11x =-21x =-(2)无解.【分析】(1)利用配方法解一元二次方程即可;(2)去分母将分式方程化为整式方程,解方程,检验即可.【详解】解:(1)225x x +=,2(1)6x ∴+=,1∴+=x∴11x =-21x =-(2)去分母得,17(3)(4)x x +-=--, 解得3x =,检验:当3x =时,30x -=, ∴3x =是方程的增根,所以,原分式方程无解.。