2019高考数学复习专题难点下载难点06 函数值域及求法
- 格式:doc
- 大小:259.00 KB
- 文档页数:6
高中数学复习专题讲座求函数值域的常用方法及值域的应用高考要求函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题 重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力典型题例示范讲解例1设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm 的空白,左右各留5 cm 空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[43,32],那么λ为何值时,能使宣传画所用纸张面积最小?命题意图 本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力知识依托 主要依据函数概念、奇偶性和最小值等基础知识错解分析 证明S (λ)在区间[43,32]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决技巧与方法 本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决解 设画面高为x cm,宽为λx cm,则λx 2=4840,设纸张面积为S cm 2, 则S =(x +16)(λx +10)=λx 2+(16λ+10)x +160,将x =λ1022代入上式得 S =5000+4410 (8λ+λ5),5cm5cm 8cm8cm当8λ=λ5,即λ=85(85<1)时S 取得最小值此时高 x =λ4840=88 cm, 宽 λx =85×88=55 cm如果λ∈[43,32],可设32≤λ1<λ2≤43,则由S 的表达式得)58)((1044)5858(1044)()(2121221121λλλλλλλλλλ--=--+=-S S又21λλ≥8532>,故8-215λλ>0,∴S (λ1)-S (λ2)<0,∴S (λ)在区间[43,32]内单调递增从而对于λ∈[43,32],当λ=32时,S (λ)取得最小值答 画面高为88 cm,宽为55 cm 时,所用纸张面积最小 如果要求λ∈[43,32],当λ=32时,所用纸张面积最小例2已知函数f (x )=xa x x++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围命题意图 本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力知识依托 本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想错解分析 考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决技巧与方法 解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得(1)解 当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数, ∴f (x )在区间[1,+∞)上的最小值为f(2)解法一 在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立, 故a >-3解法二 f (x )=x +xa +2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3例3设m 是实数,记M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +11-m )(1)证明 当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,则m ∈M(2)当m ∈M 时,求函数f (x )的最小值(3)求证 对每个m ∈M ,函数f (x )的最小值都不小于1(1)证明 先将f (x )变形 f (x )=log 3[(x -2m )2+m +11-m ],当m ∈M 时,m >1,∴(x -m )2+m +11-m >0恒成立,故f (x )的定义域为R反之,若f (x )对所有实数x 都有意义,则只须x 2-4mx +4m 2+m +11-m >0,令Δ<0,即16m 2-4(4m 2+m +11-m )<0,解得m >1,故m ∈M(2)解析 设u =x 2-4mx +4m 2+m +11-m ,∵y =log 3u 是增函数,∴当u 最小时,f (x )最小而u =(x -2m )2+m +11-m ,显然,当x =m 时,u 取最小值为m +11-m ,此时f (2m )=log 3(m +11-m )为最小值(3)证明 当m ∈M 时,m +11-m =(m -1)+11-m +1≥3,当且仅当m =2时等号成立∴log 3(m +11-m )≥log 33=1。
<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
难点6 函数值域及求法函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.●难点磁场(★★★★★)设m 是实数,记M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +11-m ). (1)证明:当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,则m ∈M .(2)当m ∈M 时,求函数f (x )的最小值.(3)求证:对每个m ∈M ,函数f (x )的最小值都不小于1. ●案例探究 [例1]设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm 的空白,左右各留5 cm 空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[43,32],那么λ为何值时,能使宣传画所用纸张面积最小?命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属★★★★★级题目.知识依托:主要依据函数概念、奇偶性和最小值等基础知识.错解分析:证明S (λ)在区间[43,32]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决.技巧与方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决.解:设画面高为x cm,宽为λx cm,则λx 2=4840,设纸张面积为S cm 2,则S =(x +16)(λx +10)=λx 2+(16λ+10)x +160,将x =λ1022代入上式得:S =5000+4410 (8λ+λ5),当8λ=λ5,即λ=85(85<1)时S 取得最小值.此时高:x =λ4840=88 cm,宽:λx =85×88=55 cm. 如果λ∈[43,32]可设32≤λ1<λ2≤43,则由S 的表达式得:)58)((1044)5858(1044)()(2121221121λλλλλλλλλλ--=--+=-S S又21λλ≥8532>,故8-215λλ>0, ∴S (λ1)-S (λ2)<0,∴S (λ)在区间[43,32]内单调递增.从而对于λ∈[43,32],当λ=32时,S (λ)取得最小值.答:画面高为88 cm,宽为55 cm 时,所用纸张面积最小.如果要求λ∈[43,32],当λ=32时,所用纸张面积最小.[例2]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.命题意图:本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力,属★★★★级题目.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2 ∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞) 当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3. ●锦囊妙计本难点所涉及的问题及解决的方法主要有: (1)求函数的值域此类问题主要利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.无论用什么方法求函数的值域,都必须考虑函数的定义域.(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目. 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题要求考生具有较强的分析能力和数学建模能力.●歼灭难点训练 一、选择题1.(★★★★)函数y =x 2+x1 (x ≤-21)的值域是( )A.(-∞,-47] B.[-47,+∞) C.[2233,+∞)D.(-∞,-3223] 2.(★★★★)函数y =x +x 21-的值域是( ) A.(-∞,1]B.(-∞,-1]C.RD.[1,+∞)二、填空题3.(★★★★★)一批货物随17列货车从A 市以V 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于(20V )2千米 ,那么这批物资全部运到B 市,最快需要_________小时(不计货车的车身长).4.(★★★★★)设x 1、x 2为方程4x 2-4mx +m +2=0的两个实根,当m =_________时,x 12+x 22有最小值_________.三、解答题5.(★★★★★)某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R (x )=5x-21x 2(万元)(0≤x ≤5),其中x 是产品售出的数量(单位:百台) (1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大? (3)年产量多少时,企业才不亏本?6.(★★★★)已知函数f (x )=lg [(a 2-1)x 2+(a +1)x +1] (1)若f (x )的定义域为(-∞,+∞),求实数a 的取值范围; (2)若f (x )的值域为(-∞,+∞),求实数a 的取值范围.7.(★★★★★)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台.已知生产家电产品每台所需工时和每台产值如下表:(以千元为单位)8.(★★★★)在Rt △ABC 中,∠C =90°,以斜边AB 所在直线为轴将△ABC 旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S 1,△ABC 的内切圆面积为S 2,记ABCABC +=x .(1)求函数f (x )=21S S 的解析式并求f (x )的定义域.(2)求函数f (x )的最小值.参考答案难点磁场(1)证明:先将f (x )变形:f (x )=log 3[(x -2m )2+m +11-m ], 当m ∈M 时,m >1,∴(x -m )2+m +11-m >0恒成立,故f (x )的定义域为R . 反之,若f (x )对所有实数x 都有意义,则只须x 2-4mx +4m 2+m +11-m >0,令Δ<0,即16m 2-4(4m 2+m +11-m )<0,解得m >1,故m ∈M .(2)解析:设u =x 2-4mx +4m 2+m +11-m ,∵y =log 3u 是增函数,∴当u 最小时,f (x )最小.而u =(x -2m )2+m +11-m ,显然,当x =m 时,u 取最小值为m +11-m ,此时f (2m )=log 3(m +11-m )为最小值.(3)证明:当m ∈M 时,m +11-m =(m -1)+ 11-m +1≥3,当且仅当m =2时等号成立.∴log 3(m +11-m )≥log 33=1.歼灭难点训练一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数,∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1 (x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].答案:A 二、3.解析:t =V 400+16×(20V )2/V =V 400+40016V≥216=8. 答案:84.解析:由韦达定理知:x 1+x 2=m ,x 1x 2=42+m ,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=m 2-22+m =(m -41)2-1617,又x 1,x 2为实根,∴Δ≥0.∴m ≤-1或m ≥2,y =(m -41)2-1617在区间(-∞,1)上是减函数,在[2,+∞)上是增函数又抛物线y 开口向上且以m =41为对称轴.故m =1时,y min =21. 答案:-121 三、5.解:(1)利润y 是指生产数量x 的产品售出后的总收入R (x )与其总成本C (x )之差,由题意,当x ≤5时,产品能全部售出,当x >5时,只能销售500台,所以y =⎪⎩⎪⎨⎧>-≤≤--=⎪⎪⎩⎪⎪⎨⎧>+-⨯-⨯≤≤+--)1( 25.012)50(5.02175.4)5)(25.05.0()52155()50)(25.05.0(215222x x x x x x x x x x x (2)在0≤x ≤5时,y =-21x 2+4.75x -0.5,当x =-ab2=4.75(百台)时,y max =10.78125(万元),当x >5(百台)时,y <12-0.25×5=10.75(万元),所以当生产475台时,利润最大.(3)要使企业不亏本,即要求⎩⎨⎧≥->⎪⎩⎪⎨⎧≥-+≤≤025.012505.075.421502x x x x x 或解得5≥x ≥4.75-5625.21≈0.1(百台)或5<x <48(百台)时,即企业年产量在10台到4800台之间时,企业不亏本.6.解:(1)依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎪⎩⎪⎨⎧-<>-<>⎪⎩⎪⎨⎧<--+=∆>-13511,0)1(4)1(01222a a a a a a a 或或即, ∴a <-1或a >35.又a =-1时,f (x )=0满足题意,a =1时不合题意.故a ≤-1或a >为35所求.(2)依题意只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f (x )的值域为R ,故有⎩⎨⎧≥∆>-0012a ,解得1<a ≤35,又当a 2-1=0即a =1时,t =2x +1符合题意而a =-1时不合题意,∴1≤a ≤35为所求. 7.解:设每周生产空调器、彩电、冰箱分别为x 台、y 台、z 台,由题意得: x +y +z =360 ①120413121=++z y x②x >0,y >0,z ≥60. ③ 假定每周总产值为S 千元,则S =4x +3y +2z ,在限制条件①②③之下,为求目标函数S 的最大值,由①②消去z ,得y =360-3x . ④将④代入①得:x +(360-3x )+z =360,∴z =2x ⑤∵z ≥60,∴x ≥30. ⑥ 再将④⑤代入S 中,得S =4x +3(360-3x )+2·2x ,即S =-x +1080.由条件⑥及上式知,当x =30时,产值S 最大,最大值为S =-30+1080=1050(千元).得x =30分别代入④和⑤得y =360-90=270,z =2×30=60.∴每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最大,最大产值为1050千元.8.解:(1)如图所示:设BC =a ,CA =b ,AB =c ,则斜边AB 上的高h =cab, ∴S 1=πah +πbh =,)2(),(22c b a S b a cab-+=+ππ, ∴f (x )=221)()(4c b a c b a ab S S -++=①又⎪⎩⎪⎨⎧-==+⇒⎪⎩⎪⎨⎧=+=+)1(222222x c ab cxb ac b a x c b a 代入①消c ,得f (x )=1)(22-+x x x .在Rt △ABC 中,有a =c sin A ,b =c cos A (0<A <2π),则 x =c b a +=sin A +cos A =2sin(A +4π).∴1<x ≤2. (2)f (x )=]12)1[(21)(22-+-=-+x x x x x +6,设t =x -1,则t ∈(0, 2-1),y =2(t +t 2)+6在(0,2-1]上是减函数,∴当x =(2-1)+1=2时,f (x )的最小值为62+8.。
难点6函数值域及求法函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题•难点磁场2 2 1 (★★★★★)设m 是实数,记M={ m|m>1}, f(x)=log3(x —4mx+4m+m+ ).m _1(1) 证明:当m€ M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m€M.(2) 当m€ M时,求函数f(x)的最小值.(3) 求证:对每个m € M,函数f(x)的最小值都不小于1.•案例探究[例1]设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为入(入<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面2 3积最小?如果要求入€[2,3],那么入为何值时,能使宣传画所用纸张面积最小?3 4命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属★★★★★级题目知识依托:主要依据函数概念、奇偶性和最小值等基础知识2 3错解分析:证明S(入)在区间[2,-]上的单调性容易出错,其次不易把应用问题转化为函数3 4的最值问题来解决•技巧与方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决•解:设画面高为x cm,宽为入x cm,则入x2=4840,设纸张面积为S cm2,则S=(x+16)(入x+10)=入x2+(16S=5000+44 \'10 (8 “区+ {——),当8勺人=—,即入=—(—<1)8 8'4840 5时S取得最小值•此时高:乂=#〒=88 cm,宽:入x=8 x88=55 cm.2 3W入1<入2三,则由S的表达式得:3 4S(s —S(為)=44怖(8扬十寻V,z i= 44,10(、1 - .. 2)(8-一5—)2 3••• S入1)-S入2)<0,••• S(x)在区间[-,-]内单调递增22』10入+10)x+160,将x=一4°代入上式得:2 3如果入€[2,-]可设3 4又| 5故8 — U 5 >0,-8 2 -从而对于入€[2,3],当入=1时,S(入)取得最小值.3 4 32 3 2答:画面高为88 cm,宽为55 cm时,所用纸张面积最小•如果要求入€[2,_ ],当入=-时,所3 4 3用纸张面积最小•2[例2]已知函数f(x)=x 2^-^ ,x€:1,+ m )x1(1) 当a= 时,求函数f(x)的最小值.2(2) 若对任意x€[1,+m ) ,f(x)>0恒成立,试求实数a的取值范围.命题意图:本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力,属★★★★级题目•知识依托:本题主要通过求f(x)的最值问题来求a的取值范围,体现了转化的思想与分类讨论的思想•错解分析:考生不易考虑把求a的取值范围的问题转化为函数的最值问题来解决技巧与方法:解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得•1 1(1) 解:当a= 时,f(x)=x+ +22 2xI f(x)在区间[1, +m )上为增函数,• •• f(x)在区间[1, +m )上的最小值为f(1)= 7 .2、x2+2x +a 2(2) 解法一:在区间]1, +m )上,f(x)= >0恒成立:=x +2x+a>0恒成立.x设y=x2+2x+a,x€[1,+ m )•/ y=x2+2x+a=(x+1)2+a- 1 递增,•••当x=1时,y min=3+a,当且仅当y min=3+a>0时,函数f(x)>0恒成立,故a> — 3.解法二:f(x)=x+a+2,x€[1,+ m )x当a > 0时,函数f(x)的值恒为正;当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a,当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>— 3.•锦囊妙计本难点所涉及的问题及解决的方法主要有:(1) 求函数的值域此类问题主要利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.无论用什么方法求函数的值域,都必须考虑函数的定义域(2) 函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3) 运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题要求考生具有较强的分析能力和数学建模能力.•歼灭难点训练一、选择题1.(★★★★)函数y=x2+^ (x w—-)的值域是()x 27、A.( —a,——]4C「332 、C. [ ,+ a )7 、B. [― 一,+ a )4D.( —a , — 2^2 :22.(★★★★)函数y=x+ -2x 的值域是()B.( ,—1 ]D. [ 1,+8 )A市以V千米/小时匀速直达B市,已知两地铁路线长V 2(―)2千米,那么这批物资全部运到B市,最快需20要_________ 小时(不计货车的车身长).4. __________________________________________________________________ ( ★★★★★)设x2为方程4x2—4mx+m+2=0的两个实根,当m= __________________________________ 时,x12+x22有最小值_________ .三、解答题5. ( ★★★★★)某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗1成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x—— x2(万元)(0 w2x w 5),其中x是产品售出的数量(单位:百台)(1) 把利润表示为年产量的函数;(2) 年产量多少时,企业所得的利润最大?(3) 年产量多少时,企业才不亏本?2 26. (★★★★)已知函数f(x)=lg [(a —1)x +(a+1)x+1 ](1) 若f(x)的定义域为(一^,+ a),求实数a的取值范围;(2) 若f(x)的值域为(—^,+ a),求实数a的取值范围.7. ( ★★★★★)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台.已知生产家电产品每台所需工时和每台产值如下表:问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)8.(★★★★)在Rt△ ABC 中,/ / C-90°,以斜边AB所在直线为轴将厶ABC旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为BC +CA &,△ ABC的内切圆面积为◎,记----------- -x.ABA.( ,1 ]C. R二、填空题3.( ★★★★★) 一批货物随17列货车从400千米,为了安全,两列货车间距离不得小于(1)求函数f(x)= 的解析式并求f(x)的定义域.S24难点磁场(1)证明:先将 f(x)变形:f(x)=log 3 [ (x — 2m)2+m+^^ m _12 1当m € M 时,m>1, • (x — m) +m+>0恒成立,故f(x)的定义域为 R .m —11反之,若f(x)对所有实数 x 都有意义,则只须 x 2 — 4mx+4m 2+m+>0,令△< 0,即16m 2 —m —12 14(4m +m+) v 0,解得 m>1,故 m € M.m —12 21u=x — 4mx+4m +m+, v y=log 3u 是增函数,•当 u 最小时,f(x)最小. u=(xm —11 1,显然,当x=m 时,u 取最小值为 m+,此时f(2m)=log 3(m+ )为最小值.m —1 m —11 1⑶证明:当 m € M 时,m+ =(m — 1)+ +1 >3,当且仅当 m=2时等号成立.m-1m-1, 1--log 3(m+) > log 33=1.m —1歼灭难点训练1 1 1 、1.解析:T m 1=x 在(— a ,——)上是减函数,m 2= 在(— a ,——)上是减函数,2x22 11 • y=x+ 在x € (—a ,—一)上为减函数,x-• y=x + — x答案:B1 2+ t=— (t — 1)2+1 < 1 2•••值域为( — a ,1 ]. 答案:A二、3.解析:七=型+16 X (V )2/v=^+便 > 2.16=8.V 20 V 400答案:8⑵求函数f(X)的最小值•参考答案(2)解析:设—2m)2+m+^^m —1 21 7 (X W ——)的值域为[—一,+a ).242.解析:令 1 -2x =t(t > 0),则 x=^^ 一, ,,.、一,m 十24.解析:由韦达定理知: x 计x 2=m,X 1X 2=• X 12+X 22=(X 1+X 2)2 — 2x 1X 2=m 2—心=(m —」)2 —2 441 2 17y=(m — - )— 在区间(一a ,1)上是减函数,在4 16 1[2, + a )上是增函数又抛物线 y 开口向上且以 m=—为对称轴.故m=1时,17荷又心为实根“m <- 1或m >2,_ 1 y mi n =21 答案:一1丄2三、5.解:(1)利润y 是指生产数量x 的产品售出后的总收入R(x)与其总成本C(x)之芒・世意,当x w 5时,产品能全部售出,当x>5时,只能销售500台,所以f 1 25x x 2 _(0.5+0.25x)(0 兰x 兰5) 2 1 2i(5 汉5 _3 x52) _(0.5 +0.25x)(x >5)(12 —0.25xy=4亦冷宀爾*5) (x 1)1 2 (2 )在 0 w x w 5 时,y=——x +4.75x — 0.5,当 2x>5(百台)时,y < 12— 0.25X 5=10.75(万元), 所以当生产475台时,利润最大.x=——=4.75(百台)时,y max =10.78125(万元),当 2a0 _x _5(3 )要使企业不亏本,即要求1 2 x 2 4.75X-0.5_0 12或』x 512 —0.25x_0 解得 5>x >4.75 — , 21.5625沁0.1(百台)或5< x v 48(百台)时,即企业年产量在 10台到4800台之间时, 6.解:企业不亏本 .(1)依题意(a 2 — 1) x 2+(a+1)x+1>0对一切x € R 恒成立,当a 2— 1工0时,其充要条件是 'j :2,即A =(a +1)2 -4(a 2 -1) c0a 1 或a ::: -1a 5或 a "、 5 5 .• a <— 1或a> .又a=— 1时,f(x)=0满足题意,a=1时不合题意.故a w — 1或a>为 所求. 332 2t=(a — 1)x +(a+1)x+1能取到(0, + R )上的任何值,贝Uf(x)的值域为 R ,故有(2)依题意只要 厂2a 2 一1 =0 …,解得5 21 < a w -,又当a —仁0即a=1时,t=2x+1符合题意而a=— 1时不合题意,•• 1 w a35w 一为所求.37.解:设每周生产空调器、彩电、冰箱分别为 x 台、y 台、z 台,由题意得:x+y+z=3601 1 1 x y z =12023 4② x>O,y>O,z 》60.假定每周总产值为 S 千元,则S=4x+3y+2z,在限制条件①②③之下,为求目标函数 由①②消去 乙得y=360 — 3x.④将④代入①得: x+(360 — 3x)+z=360, ••• z=2x •/ z > 60, • x > 30.再将④⑤代入 S 中,得S=4x+3(360 — 3x)+2 • 2x,即 S= — x+1080.由条件⑥及上式知,S 的最大值, ⑤ ⑥x=30时,产值S 最大,最大值为 S=-30+1080=1050(千元)•得x=30分别代入④和⑤得 y=360 — 90=270,z=2 X 30=60.... f (x )=S !二 4ab(a b )2S 2 c(a+b —c)a b = ex\ . c 2 2ab (x -1) 22代入①消c ,得f(x)=4^ 勺X —1在 Rt △ ABC 中,有 a=csinA,b=ccosA(0 v A v 》)则2 ,x= =sinA+cosA= . 2 sin(A+ ). • • 1 v x <2.c 4 2&2 亠 x)22(2)f(x)=2[(x-1)] +6,设 t=x — 1,则 t € (0, 2 — 1),y=2(t+—)+6 在(0,. 2 — 1] x —1x —1 t上是减函数,.••当 x=( . 2 — 1)+1= .2时,f(x)的最小值为6 -. 2 +8.•••每周应生产空调器 30台,彩电270台,冰箱60台,才能使产值最大, 最大产值为1050千元.8.解:⑴如图所示:设abBC=a,CA=b,AB=c,则斜边 AB 上的高 h= , c •• 0= n ah+ n bh=二 ab(a b), S 2 ca b 「c 2「二)ca 2b 2 =c 2。
教学内容概要教学内容【知识精讲】一、函数的概念1、函数的定义:设A B 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。
2、函数的三要素分别指函数的定义域、值域、对应法则;当两个函数的定义域、对应法则分别相同时,那么这两个函数是同一函数。
3、函数的表示方法一般有解析法、列表法、图像法当图像满足和,x a a R =∈的图像最多只有一个交点时才可作为函数图像。
分段函数:在用解析法表示函数的时候,往往在其定义域的不同子集上,因对应法则不同而用几个式子来表示的函数即分段函数。
分段函数是一个函数,而不是几个函数。
在解决问题过程中,要处理好整体与局部的关系。
4、函数的运算:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,设φ≠⋂=21D D D 把函数()()()D x x g x f ∈+叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的和函数 把函数()()()D x x g x f ∈叫做函数()()1D x x f y ∈=与()()2D x x g y ∈=的积函数 6、复合函数:对于两个函数()()1D x x f y ∈=,()()2D x x g y ∈=,若满足()1D x g ∈的x 的取值范围为E ,设φ≠⋂=2D E D ,把函数()()x g f y =叫做函数()()1D x x f y ∈=,()()2D x x g y ∈=的复合函数,x 是复合函数()()x g f y =的自变量,定义域为D ,()x g 叫做内函数,()x f 叫做外函数。
函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
专题 求函数值域的常用方法及值域的应用三、值域的概念和常见函数的值域....................................................... - 1 - 四、求函数值域(最值)的常用方法..................................................... - 1 -.直接法 ......................................................................... - 1 - 配方法 .......................................................................... - 2 - 换元法 .......................................................................... - 3 - 基本不等式法 .................................................................... - 4 - 函数的单调性(导数)法 .......................................................... - 5 - 数形结合法 ...................................................................... - 7 - 函数的有界性法 .................................................................. - 8 - 分离常数法 ...................................................................... - 8 - 三角函数中的值域问题 .......................................................... - 10 - 五、高考真题汇编 ................................................................... - 11 -三、值域的概念和常见函数的值域1、定义:函数值y 的取值范围叫做函数的值域(或函数值的集合)。
重难点第三讲函数值域的求法8大题型——每天30分钟7天掌握函数值域的求法8大题型【命题趋势】函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、求函数值域的常见方法1、直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2、逐层法:求12(())n f f f x 型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3、配方法:配方法是二次型函数值域的基本方法,即形如“(0)x y ax bx c a =++≠”或“2[()]()(0)y a f x bf x c a =++≠”的函数均可用配方法求值域;4、换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y=或y ax b=+t =”换元;(2)y ax b =+±(,,,a b c d 均为常数,0,0a c ≠≠)t =”换元;(3)y bx =±型的函数,可用“cos ([0,])x a θθπ=∈”或“sin ([,])22x a ππθθ=∈-”换元;5、分离常数法:形如(0)ax by ac cx d+=≠+的函数,应用分离常数法求值域,即2()ax b a bc ady d cx d c c x c+-==+++,然后求值域;6、基本不等式法:形如(0)by ax ab x=+>的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a b +≥求函数的值域(或最值)时,应满足三个条件:①0,0a b >>;②a b +(或ab )为定值;③取等号的条件为a b =,三个条件缺一不可;7、函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)。
高中数学函数值域的种求法总结高中数学中,函数值域是指函数在定义域内所有可能的取值的集合。
求函数值域是解决各类函数问题的重要方法之一、下面将总结高中数学中常用的求函数值域的11种方法。
1.利用定义法:根据函数的定义,直接求解函数的取值范围。
例如,对于函数f(x)=x^2,由于平方永远非负,所以其值域为[0,+∞)。
2. 利用图像法:通过绘制函数的图像,观察图像的上下界即可求得函数的值域。
例如,对于函数 f(x) = sin(x),由于正弦函数的取值范围在[-1, 1]之间,故其值域为[-1, 1]。
3.利用对称性:对于一些具有对称性的函数,可以利用函数的对称性来快速求解其值域。
例如,对于奇函数f(x)=x^3,由于x^3关于原点对称,故其值域为整个实数轴。
4.利用函数的性质:通过函数的特点和性质来求解其值域。
例如,对于指数函数f(x)=a^x,由于指数函数永远大于0,所以其值域为(0,+∞)。
5. 利用最值的求解方法:对于具有最值的函数,可以通过求解最值来确定函数的值域。
例如,对于二次函数 f(x) = ax^2 + bx + c,其中a > 0,由于 a > 0,故二次函数的开口向上,函数的最小值为顶点的 y坐标,可以通过求解顶点坐标来确定函数的值域。
6.利用函数的递增性或递减性:对于递增函数或递减函数,可以根据函数递增性或递减性来求解其值域。
例如,对于递增函数f(x)=2x+1,由于斜率大于零,函数单调递增,故值域为(-∞,+∞)。
7. 利用函数的周期性:对于具有周期性的函数,可以利用函数的周期性来求解其值域。
例如,对于正弦函数 f(x) = sin(x),由于正弦函数的值在一个周期内是重复的,故其值域为 [-1, 1]。
8. 利用函数的复合性:对于复合函数,可以将函数拆解成多个简单的函数,然后求解每个简单函数的值域,最后将值域组合起来得到复合函数的值域。
例如,对于函数 f(x) = sqrt(x^2 + 1),可以拆解成 f(x) = g(h(x)), 其中 g(x) = sqrt(x) 和 h(x) = x^2 + 1,然后求解 g(x) 和h(x) 的值域,最后得到 f(x) 的值域。
高中数学求函数值域解题方法大全一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y =的值域。
0≥11≥,∴函数1y =的值域为[1,)+∞。
【例2】求函数的值域。
【解析】∵ ∴ 显然函数的值域是:【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标x 1y =0x ≠0x 1≠),0()0,(+∞-∞Y,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t (2)当∈t [-3,-2]时,求g(t)的最值。
(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。
图1图2图3①如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。
②如图2所示,若顶点横坐标在区间上时,有,即。
当时,函数取得最小值。
③如图3所示,若顶点横坐标在区间右侧时,有,即。
高考数学难点突破_难点06__函数值域及求法函数值域及求法是高考数学中的一个重要难点。
本文将介绍函数的值域的概念、求法及一些常见的解题思路。
一、函数值域的概念函数的值域是指函数在定义域内取到的所有可能的函数值的集合。
简单来说,就是函数所有可能的输出值构成的集合。
二、值域的求法1.函数图像法:根据函数的图像来判断函数的值域。
当函数的图像是一个区间时,值域就是这个区间。
当函数的图像是一个集合时,值域就是这个集合。
2.分析法:根据函数的定义和性质来进行分析。
a.奇偶性:如果函数是奇函数,即对于任意的x,有f(-x)=-f(x),那么函数的值域关于y轴对称。
如果函数是偶函数,即对于任意的x,有f(-x)=f(x),那么函数的值域关于x轴对称。
b.函数的单调性:如果函数在定义域上是单调递增或单调递减的,那么可以通过求出函数的最值来确定值域。
c.函数的周期性:如果函数是周期性的,那么可以根据周期性来确定值域。
比如正弦函数的值域是[-1,1],余弦函数的值域也是[-1,1]。
d.函数的极限:如果函数在定义域的一些点处的极限存在,那么该点处的极限就是函数的值域。
三、一些解题思路1.利用函数的性质进行求解:利用函数的奇偶性、单调性、周期性、极限等性质进行求解。
2.利用导数进行求解:如果函数存在可导性质,可以通过求导数来分析函数的变化趋势,从而确定值域。
3.利用反函数进行求解:如果函数存在反函数,可以通过求反函数的定义域和值域来确定原函数的值域。
4.利用函数的定义进行求解:通过函数的定义式,对函数进行变形、化简,从而求出函数的值域。
四、例题解析考虑函数f(x)=1/(x-1),我们来求函数的值域。
首先,由函数的定义可知,函数的定义域是x≠1然后,我们可以通过分析函数的性质来确定它的值域。
对于函数f(x)=1/(x-1),我们可以看出它是一个单调递增函数。
当x逼近无穷大时,函数的值也会无限接近于0。
所以,当x→∞时,f(x)≈0。
【热点聚焦】函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x ∈[0,2]与函数f(x)=|x|,x∈[-2,0].2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.常见函数定义域的求法类型x满足的条件n f x(n∈N*)f(x)≥02()(n∈N*)f(x)有意义21()n f x1与[f(x)]0f(x)≠0f x()log a f(x)(a>0且a≠1)f(x)>0a f(x)(a>0且a≠1)f(x)有意义tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( ) A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)2【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .222⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4B .3C .2D .1【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313xf x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2B .[]1,3C .[]0,2D .[]2,3【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__.【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x a f x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y x3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4D .[]0,44.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,45.(2022·江西·高三阶段练习(文))函数()s 2π2inx f x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1]B .(﹣1,12)C .[﹣1,12)D .(0,1)7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mx f x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .210.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____.13.(2023·全国·高三专题练习)已知函数()121xf x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 四、填空题14.(2022·全国·高三专题练习)函数()02112y x x x =++-的定义域是________.15.(2022·上海闵行·二模)已知函数()()41log 42xf x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;16.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1af x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞; ②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增: ④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__.。
函数难点讲解分析难点1函数值域及求法函数的值域及其求法是近几年高考考查的重点内容之一。
主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。
●难点磁场(★★★★★)设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。
(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x 都有意义,则m∈M。
(2)当m∈M时,求函数f(x)的最小值。
(3)求证:对每个m∈M,函数f(x)的最小值都不小于1。
难点2奇偶性与单调性(一)函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样。
本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象。
●难点磁场(★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数。
难点3奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。
本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。
●难点磁场(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
●案例探究[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值。
难点4指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题。
●难点磁场(★★★★★)设f(x)=log2,F(x)= +f(x)。
(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ;(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解。
难点6 函数值域及求法
函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.
●难点磁场
(★★★★★)设m 是实数,记M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +1
1-m ). (1)证明:当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,则m ∈M .
(2)当m ∈M 时,求函数f (x )的最小值.
(3)求证:对每个m ∈M ,函数f (x )的最小值都不小于1.
●案例探究
[例1]设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm 的空白,左右各留5 cm 空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[43,32],那么λ为何值时,能使宣传画所用纸张面积最小?
命题意图:本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力,属★★★★★级题目.
知识依托:主要依据函数概念、奇偶性和最小值等基础知识.
错解分析:证明S (λ)在区间[4
3,32]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决.
技巧与方法:本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决.
解:设画面高为x cm,宽为λx cm,则λx 2=4840,设纸张面积为S cm 2,则S =(x +16)(λx +10)=λx 2+(16λ+10)x +160,将x =λ10
22代入上式得:S =5000+4410 (8λ+λ5
),当8λ=λ5
,即λ=8
5
(85<1)时S 取得最小值.此时高:x =λ4840
=88 cm,宽:λx =8
5×88=55 cm. 如果λ∈[4
3,32]可设32≤λ1<λ2≤43,则由S 的表达式得: )58)((1044)5858(1044)()(2
121221
121λλλλλλλλλλ--=--+
=-S S 又21λλ≥8532>,故8-2
15λλ>0,。