第1课时 动力学观点在力学中的应用
- 格式:doc
- 大小:237.00 KB
- 文档页数:6
第1讲 动力学观点在力学中的应用1.物体或带电体做匀变速直线运动的条件是:物体或带电体所受合力为恒力,且与速度方向共线.2.匀变速直线运动的基本规律为 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 20=2ax .中间时刻的瞬时速度:2v t =x t =v 0+v 2.任意相邻两个连续相等的时间内的位移之差是一个恒量,即Δx =x n +1-x n =a ·(Δt )2. 3.速度—时间关系图线的斜率表示物体运动的加速度,图线与时间轴所包围的面积表示物体运动的位移.匀变速直线运动的v -t 图象是一条倾斜直线.4.位移—时间关系图线的斜率表示物体的速度,匀变速直线运动的x -t 图象是一条抛物线.5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化.物体发生超重或失重现象与物体的运动方向无关,只决定于物体的加速度方向.当a 有竖直向上的分量时,超重;当a 有竖直向下的分量时,失重;当a =g 且竖直向下时,完全失重.1.动力学的两类基本问题的处理思路2.解决动力学问题的常用方法 (1)整体法与隔离法.(2)正交分解法:一般沿加速度方向和垂直于加速度方向进行分解,有时根据情况也可以把加速度进行正交分解.(3)逆向思维法:把运动过程的末状态作为初状态的反向研究问题的方法,一般用于匀减速直线运动问题,比如刹车问题、竖直上抛运动的问题.例1 一个物体以初速度v 0沿光滑斜面向上运动,其速度v 随时间t 变化的规律如图1所示,在连续两段时间m 和n 内对应面积均为S ,则经过b 时刻v b 的大小为( )图1A.(m -n )S mnB.mn (m 2+n 2)S (m +n )C.(m 2+n 2)S (m +n )mnD.(m 2+n 2)S mn解析 设b 时刻的速度为v b ,加速度为a ,根据x =v 0t +12at 2得:S =v a m -12am 2① S =v b n -12an 2② v b =v a -am③①②③联立得:v b =(m 2+n 2)S(m +n )mn .答案 C预测1 (2016·全国丙卷·16)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( ) A.s t 2 B.3s 2t 2 C.4s t 2 D.8s t 2 答案 A解析 动能变为原来的9倍,则质点的速度变为原来的3倍,即v =3v 0,由s =12(v 0+v )t 和a =v -v 0t 得a =s t2,故A 对.预测2 广泛应用于我国高速公路的电子不停车收费系统(ETC)是目前世界上最先进的收费系统,过往车辆无须停车即能够实现收费.如图2所示为某高速公路入口处的两个通道的示意图,ETC 收费岛(阴影区域)长为d =36 m.人工收费窗口在图中虚线MN 上,汽车到达窗口时停车缴费时间需要t 0=20 s.现有甲、乙两辆汽车均以v =30 m /s 的速度并排行驶,根据所选通道特点进行减速进入收费站,驶入收费岛区域中的甲车以v 0=6 m/s 的速度匀速行驶.设两车减速和加速的加速度大小均为3 m/s 2,求图2(1)从开始减速到恢复速度v ,甲车比乙车少用的时间; (2)乙车交费后,当恢复速度v 时离甲车的距离. 答案 (1)18 s (2)564 m解析 (1)甲车进入收费岛之前的减速时间:t 1=v -v 0a =8 s ,通过收费岛的时间:t 2=dv 0=6 s离开收费岛的加速时间为:t 3=t 1=8 s , 所以:t 甲=t 1+t 2+t 3=22 s 乙车的时间:t 乙=2va+t 0=40 s所以甲车比乙车少用的时间为:Δt =t 乙-t 甲=18 s.(2)甲车开始减速时与MN 的距离为:l 甲=v 0+v2t 1+d =180 m乙车开始减速时与MN 的距离为:l 乙=v 22a =150 mΔt ′=Δlv =1 s即甲车开始减速后1 s 乙车开始减速.所以从甲车开始减速到乙车恢复速度v 共经过t ′=41 s 的时间. x 甲=v 0+v 2t 1×2+d +v (t ′-t 甲)=894 mx 乙=v 22a×2=300 m所以乙车交费后,当恢复速度v 时离甲车的距离为:Δx =x 甲-x 乙-Δl =564 m.例2 (多选)如图3(a)所示,质量相等的a 、b 两物体,分别从斜面上的同一位置A 由静止下滑,经B 点的水平面上滑行一段距离后停下.不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图(b)所示,下列说法正确的是( )图3A.a 在斜面上滑行的加速度比b 的大B.a 在水平面上滑行的距离比b 的短C.a 与斜面间的动摩擦因数比b 的小D.a 与水平面间的动摩擦因数比b 的大解析 由题图(b)图象斜率可知a 做加速运动时的加速度比b 做加速运动时的加速度大,故A 正确;物体在水平面上的运动是匀减速运动,a 从t 1时刻开始,b 从t 2时刻开始.由图象与坐标轴围成的面积表示位移可知,a 在水平面上做匀减速运动的位移比b 在水平面上做匀减速运动的位移大,故B 错误;设斜面倾角为θ,物体在斜面上运动的加速度为a =mg sin θ-μmg cos θm =g sin θ-μg cos θ,因为a 的加速度大于b 的加速度,所以a 与斜面间的动摩擦因数比b 的小,故C 正确,同理,D 错误. 答案 AC预测3 以不同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可以忽略,另一个物体所受空气阻力大小与物体速率成正比,下列用虚线和实线描述两物体运动的v -t 图象可能正确的是( )答案 B解析 没有空气阻力时,物体只受重力,做竖直上抛运动,v -t 图象是向下倾斜的直线,如虚线所示;有空气阻力时:上升阶段,根据牛顿第二定律,有:mg +F f =ma ,故a =g +F f m,由于阻力随着速度减小而减小,故加速度逐渐减小,最小值为g ;下降阶段,根据牛顿第二定律,有:mg -F f =ma ,故a =g -F fm ,由于阻力随着速度增大而增大,故加速度减小;v-t 图象的斜率表示加速度,故图线与t 轴的交点对应时刻的加速度为g ,切线与虚线平行;故A 、C 、D 错误,B 正确.预测4 (多选)如图4甲所示,水平地面上固定一足够长的光滑斜面,斜面顶端有一理想定滑轮,一轻绳跨过滑轮,绳两端分别连接小物块A 和B .保持A 的质量不变,改变B 的质量m ,当B 的质量连续改变时,得到A 的加速度a 随B 的质量m 变化的图线,如图乙所示.设加速度沿斜面向上的方向为正方向,空气阻力不计,重力加速度g 取9.8 m/s 2,斜面的倾角为θ,下列说法正确的是( )图4A.若θ已知,可求出A 的质量B.若θ未知,可求出乙图中a 1的值C.若θ已知,可求出乙图中a 2的值D.若θ已知,可求出乙图中m 0的值 答案 BC解析 对B ,mg -F =ma . 对A ,F -m A g sin θ=m A a . 得:a =m -m A sin θm +m A·g故m →+∞时,a 1=g ,B 正确. m =0时,a 2=-g sin θ,选项C 正确.解题方略1.传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.因此,搞清楚物体与传送带间的相对运动方向是解决该问题的关键.2.传送带问题还常常涉及到临界问题,即物体与传送带速度相同,这时会出现摩擦力改变的临界状态,具体如何改变要根据具体情况判断.例3 如图5所示为一电磁选矿、传输一体机的传送带示意图,已知传送带由电磁铁组成,位于A 轮附近的铁矿石被传送带吸引后,会附着在A 轮附近的传送带上,被选中的铁矿石附着在传送带上与传送带之间有恒定的电磁力作用且电磁力垂直于接触面,且吸引力为其重力的1.4倍,当有铁矿石附着在传送带上时,传送带便会沿顺时针方向转动,并将所选中的铁矿石送到B 端,由自动卸货装置取走.已知传送带与水平方向夹角为53°,铁矿石与传送带间的动摩擦因数为0.5,A 、B 两轮间的距离为L =64 m ,A 、B 两轮半径忽略不计,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.图5(1)若传送带以恒定速率v 0=10 m/s 传动,求被选中的铁矿石从A 端运动到B 端所需要的时间;(2)实际选矿传送带设计有节能系统,当没有铁矿石附着传送带时,传送带速度几乎为0,一旦有铁矿石吸附在传送带上时,传送带便会立即加速启动,要使铁矿石最快运送到B 端,传送带的加速度至少为多大?并求出最短时间. 解析 (1)当传送带匀速向上传动时,对铁矿石 沿传送带方向F f -mg sin θ=ma 垂直传送带方向:F N -mg cos θ-F =0 其中F =1.4mg ,F f =μF N ,解得:a =2 m/s 2则铁矿石运动到与传送带速度相等所需要的时间为:t 1=v 0a =102 s =5 s对应的位移为:x 1=12at 21=12×2×52m =25 m 根据以上计算可知,铁矿石在传送带上受到的滑动摩擦力大于铁矿石重力沿传送带方向的分力,所以当铁矿石的速度与传送带速度相等以后,铁矿石会随传送带匀速运动到B 端,则其匀速运动时间为:t 2=L -x 1v 0=64-2510s =3.9 s所以铁矿石从传送带的A 端运动到B 端所需要的时间为:t =t 1+t 2=8.9 s.(2)只有铁矿石一直加速运动到B 点时,所用时间才会最短,根据问题(1)分析可知,铁矿石在传送带上的最大加速度是2 m/s 2,所以传送带的最小加速度为:a min =2 m/s 2 则有:L =12at ′2,代入数据解得最短时间为:t ′=8 s.答案 (1)8.9 s (2)2 m/s 2 8 s预测5 如图6所示,物块M 在静止的足够长的传送带上以速度v 0匀速下滑时,传送带突然启动,方向如图中箭头所示,在此传送带的速度由零逐渐增加到2v 0后匀速运动的过程中,以下分析正确的是( )图6A.M 下滑的速度不变B.M 开始在传送带上加速到2v 0后向下匀速运动C.M 先向下匀速运动,后向下加速,最后沿传送带向下匀速运动D.M 受的摩擦力方向始终沿传送带向上 答案 C解析 传送带静止时,物块匀速下滑,故mg sin θ=F f ,当传送带的速度大于物块的速度时,物块受到向下的摩擦力,根据受力分析可知,物块向下做加速运动,当速度达到与传送带速度相等时,物块和传送带具有相同的速度匀速下滑,故C 正确,故选C.预测6 如图7所示,足够长的水平传送带,以初速度v 0=6 m /s 顺时针转动.现在传送带左侧轻轻放上质量m =1 kg 的小滑块,与此同时,启动传送带制动装置,使得传送带以恒定加速度a =4 m/s 2减速直至停止;已知滑块与传送带间的动摩擦因数μ=0.2,滑块可以看成质点,且不会影响传送带的运动,g =10 m/s 2.试求:图7(1)滑块与传送带共速时,滑块相对传送带的位移; (2)滑块在传送带上运动的总时间t .答案 (1)3 m (2)2 s解析 (1)对滑块,由牛顿第二定律可得: μmg =ma 1,得:a 1=2 m/s 2设经过t 1滑块与传送带共速v ,有: v =v 0-at 1 v =a 1t 1,解得:v =2 m/s ,t 1=1 s 滑块位移为x 1=v t 12=1 m传送带位移为x 2=(v 0+v )t 12=4 m故滑块相对传送带的位移Δx =x 2-x 1=3 m(2)共速之后,设滑块与传送带一起减速,则滑块与传送带间的静摩擦力为F f ,有: F f =ma =4 N>μmg =2 N ,故滑块与传送带相对滑动. 滑块做减速运动,加速度仍为a 1. 滑块减速时间为t 2,有:t 2=0-v-a 1=1 s , 故:t =t 1+t 2=2 s.解题方略1.“滑块—木板模型”类问题中,滑动摩擦力的分析方法与传送带类似,但这类问题比传送带类问题更复杂,因为木板往往受到摩擦力的影响也做匀变速直线运动,处理此类物体匀变速运动问题要注意从速度、位移、时间等角度,寻找它们之间的联系.2.要使滑块不从木板的末端掉下来的临界条件是滑块到达木板末端时的速度与木板的速度恰好相等.例4 如图8所示,有两个高低不同的水平面,高水平面光滑,低水平面粗糙.一质量为5 kg 、长度为2 m 的长木板靠在低水平面边缘A 点,其表面恰好与高水平面平齐,长木板与低水平面间的动摩擦因数为0.05,一质量为1 kg 可视为质点的滑块静止放置,距A 点距离为3 m ,现用大小为6 N 、水平向右的外力拉滑块,当滑块运动到A 点时撤去外力,滑块以此时的速度滑上长木板.滑块与长木板间的动摩擦因数为0.5,取g =10 m/s 2.求:图8(1)滑块滑动到A 点时的速度大小;(2)滑块滑动到长木板上时,滑块和长木板的加速度大小分别为多少? (3)通过计算说明滑块能否从长木板的右端滑出. 解析 (1)根据牛顿第二定律有:F =ma 根据运动学公式有:v 2=2aL 0 联立方程代入数据解得:v =6 m/s其中m 、F 分别为滑块的质量和受到的拉力,a 是滑块的加速度,v 即是滑块滑到A 点时的速度大小,L 0是滑块在高水平面上运动的位移. (2)根据牛顿第二定律有: 对滑块有:μ1mg =ma 1 代入数据解得:a 1=5 m/s 2对长木板有:μ1mg -μ2(m +M )g =Ma 2, 代入数据解得:a 2=0.4 m/s 2.其中M 为长木板的质量,a 1、a 2分别是此过程中滑块和长木板的加速度,μ1、μ2分别是滑块与长木板间和长木板与低水平面间的动摩擦因数.(3)设滑块滑不出长木板,从滑块滑上长木板到两者相对静止所用时间为t 则:v -a 1t =a 2t代入数据解得:t =109s ,则此过程中滑块的位移为:x 1=v t -12a 1t 2长木板的位移为:x 2=12a 2t 2x 1-x 2=103m>L式中L =2 m 为长木板的长度,所以滑块能滑出长木板右端. 答案 (1)6 m /s (2)5 m/s 2 0.4 m/s 2 (3)能预测7 (多选)如图9甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A .木板B 受到随时间t 变化的水平拉力F 作用时,用传感器测出木板B 的加速度a ,得到如图乙所示的a -F 图象,g 取10 m/s 2,则( )图9A.滑块A 的质量为4 kgB.木板B 的质量为1 kgC.当F =10 N 时木板B 的加速度为4 m/s 2D.滑块A 与木板B 间的动摩擦因数为0.1 答案 BC解析 由图知,当F =8 N 时,加速度为:a =2 m/s 2,对整体分析: F =(m A +m B )a ,解得:m A +m B =4 kg ,当F 大于8 N 时,A 、B 发生相对滑动,对B 有:a =F -μm A g m B =1m B F -μm A gm B ,由图示图象可知,图线的斜率:k =1m B =Δa ΔF =28-6=1,解得:m B =1 kg ,滑块A 的质量为:m A =3 kg.当a =0时,F =6 N ,代入解得 μ=0.2,故A 、D 错误,B 正确;根据F =10 N>8 N 时,滑块与木板相对滑动,B 的加速度为:a B =a =F -μm A g m B =1m B F -μm A m B g =(11×10-0.2×301)m /s 2=4 m/s 2.故C 正确.预测8 如图10所示,在足够高的光滑水平台面上静置一质量为3 kg 的长木板A ,A 右端用轻绳绕过光滑的轻质定滑轮与质量为1 kg 的物体B 连接,木板A 的右端与滑轮之间的距离足够大.当B 从静止开始下落距离0.8 m 时,在木板A 的右端轻放一质量为1 kg 的小铁块C (可视为质点),最终C 恰好未从木板A 上滑落.A 、C 间的动摩擦因数μ=0.4,且最大静摩擦力等于滑动摩擦力.重力加速度g =x 10 m/s 2.求:图10(1)在木板上放小铁块前瞬间木板的速度大小; (2)木板A 的长度l . 答案 (1)2 m/s (2)0.8 m解析 (1)在木板上放小铁块前,把A 、B 看作整体,由牛顿第二定律有m B g =(m A +m B )a 1v 21=2a 1h解得:v 1=2 m/s.(2)在木板上放小铁块后,取向右为正方向,由牛顿第二定律对小铁块有:μm C g =m C a 2 得a 2=4 m/s 2对木板有:m B g -μm C g =(m A +m B )a 3 得a 3=1.5 m/s 2由题意知,小铁块滑到木板左端时,小铁块与木板的速度相同, 则有a 2t =v 1+a 3t 解得:t =0.8 s 由运动学公式可知:l =v 1t +12a 3t 2-12a 2t 2解得:l =0.8 m.专题强化练1.动车组是由几节自带动力的车辆(动车)和几节不带动力的车辆(拖车)编在一起组成的,如图1所示.一工作人员站在车外进行观测,发现某动车组连续两节经过他的时间依次为5 s 和4 s ,若动车组可看成做匀变速直线运动,每节车厢的长度为30 m ,则该动车组的加速度约为( )图1A.0.17 m /s 2B.0.30 m/s 2C.0.33 m /s 2D.0.38 m/s 2答案 C解析 由匀变速运动的位移公式,x =v 0t +12at 2对两节车厢有60=v 0×(5+4)+12a (5+4)2对第一节车厢,30=v 0×5+12a ·52联立解得a ≈0.33 m/s 2,故选项C 正确.2.(多选)(2016·全国乙卷·21)甲、乙两车在平直公路上同向行驶,其v t 图象如图2所示.已知两车在t =3 s 时并排行驶,则( )图2A.在t =1 s 时,甲车在乙车后B.在t =0时,甲车在乙车前7.5 mC.两车另一次并排行驶的时刻是t =2 sD.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m 答案 BD解析 根据v t 图,甲、乙都沿正方向运动.t =3 s 时,甲、乙相遇,此时v 甲=30 m /s ,v 乙=25 m/s ,由位移和v t 图线所围面积对应关系知,0~3 s 内甲车位移x 甲=12×3×30 m =45 m ,乙车位移x 乙=12×3×(10+25) m =52.5 m.故t =0时,甲、乙相距Δx 1=x 乙-x 甲=7.5 m ,即甲在乙前方7.5 m ,B 选项正确;0~1 s 内,x 甲′=12×1×10 m =5 m ,x 乙′=12×1×(10+15) m =12.5 m ,Δx 2=x 乙′-x 甲′=7.5 m =Δx 1,说明甲、乙第一次相遇,A 、C 错误;甲、乙两次相遇地点之间的距离为x =x 甲-x 甲′=45 m -5 m =40 m ,所以D 选项正确. 3.近来,“中国式过马路”成为人们热议的话题.行人过马路时必须遵守交通规则,而红绿灯的时间设置也必须考虑到行人的安全.假设行人过马路时看到红灯转绿灯时反应时间为0.2 s ,设行人先做匀加速运动,经过1 s 速度达到了最大值1.5 m/s ,然后以这一速度匀速通过马路,已知马路的宽度为40 m ,行人沿直线垂直马路在斑马线上行走,则根据以上数据计算出该路口的行人绿灯设置的最短时间为( ) A.10 s B.20 s C.28 s D.40 s 答案 C解析 人匀加速运动的位移x 1=v m 2t 1=1.52×1 m =0.75 m ,匀速运动的位移x 2=40-x 1=39.25 m ,时间t 2=x 2v m≈26.2 s.绿灯设置的最短时间t =Δt +t 1+t 2=(0.2+1+26.2) s =27.4 s ,接近28 s.4.(多选)如图3所示,三角形传送带以1 m /s 的速度逆时针匀速转动,两边的传送带长都是2m ,且与水平方向的夹角均为30°.现有两质量相同的小物块A 、B 从传送带顶端都以1 m/s 的初速度沿传送带下滑,物块与传送带间的动摩擦因数均为0.6,下列说法正确的是( )图3A.下滑相同距离内物块A 、B 机械能的变化一定不相同B.下滑相同时间内物块A 、B 机械能的变化一定相同C.物块A 、B 一定不能同时到达传送带底端D.物块A 、B 在传送带上的划痕长度相同 答案 AC解析 因为mg sin 30°=12mg <μmg cos 30°=3310mg ,所以A 做匀速直线运动,B 做匀减速直线运动,下滑相同距离内摩擦力做功不同,物块A 、B 机械能的变化一定不相同,A 正确,B 错误;如果都能到达底端,则位移相同,一个匀速运动,一个匀减速运动,所以物块A 、B 一定不能同时到达传送带底端,C 正确;由于A 相对传送带静止,所以在传送带上的划痕为零,B 做匀减速直线运动,相对传送带的划痕不为零,故D 错误.5.(多选)如图4所示,一水平传送带以v 0的速度顺时针传送,其右端与一倾角为θ的光滑斜面平滑相连,一个可视为质点的物块轻放在传送带最左端,已知物块的质量为m ,若物块经传送带与斜面的连接处无能量损失,则( )图4A.物块在第一次冲上斜面前,一定一直做加速运动B.物块不可能从传送带的左端滑落C.物块不可能回到出发点D.物块的最大机械能不可能大于12m v 20 答案 BD解析 设传送带的长度为L ,物块运动的过程中,物块匀加速运动的位移:x =v 22a,若x ≥L ,则物块在第一次冲上斜面前,一定一直做加速运动;若x <L ,则物块先加速后匀速.故A 错误;若物块在传送带上一直做加速运动,则返回的过程中物块一直做减速运动,由于两个运动的加速度的大小是相等的,可知物块将能够恰好返回出发点,但不可能从传送带的左端滑落.故B 正确,C 错误;物块在传送带上运动的过程中,传送带的摩擦力对物块做功,所以物块的速度不可能大于v 0,物块在斜面上运动的过程中只有重力做功,机械能不增加.所以滑块的最大机械能不可能大于12m v 20.故D 正确.故选B 、D. 6.放在足够长的木板上的物体A 和B 由同种材料制成,且表面粗糙程度一样,现随长木板以速度v 向右做匀速直线运动,如图5所示.某时刻木板突然停止运动,已知m A >m B ,下列说法正确的是( )图5A.若木板光滑,由于A 的惯性较大,所以A 、B 一定会相撞B.若木板粗糙,由于A 的动能较大,所以A 、B 一定会相撞C.若木板粗糙,由于A 所受的摩擦力较大,所以A 比B 先停下来D.无论木板是否光滑,A 、B 间的相对距离保持不变 答案 D解析 若木板光滑,A 、B 在水平面上不受力,由于物体具有惯性,则A 、B 将以原来的速度做匀速直线运动,保持相对静止;若木板粗糙,尽管两物体的质量不同,所受的摩擦力大小不同,但其加速度为a =μmgm=μg ,与质量无关,故两物体将有相同的加速度,任意时刻有相同的速度.保持相对静止.故D 正确,A 、B 、C 错误.7. 2015年12月10日,百度宣布,其无人驾驶汽车已完成国内首次城市、环路及高速道路混合路况下的全自动驾驶.(1)如图6所示,无人驾驶汽车车头装有一个激光雷达,就像车辆的“鼻子”,随时“嗅”着前方80 m 范围内车辆和行人的“气息”.若无人驾驶汽车在某路段刹车时的加速度为3.6 m/s 2,为不撞上前方静止的障碍物,汽车在该路段匀速行驶时的最大速度是多少?图6(2)若一辆有人驾驶的汽车在该无人驾驶汽车后30 m 处,两车都以20 m /s 的速度行驶,当前方无人驾驶汽车以3.6 m/s 2的加速度刹车1.4 s 后,后方汽车驾驶员立即以5.0 m/s 2的加速度刹车.试通过计算判断两车在运动过程中是否会发生追尾事故? 答案 (1)24 m/s (2)不会解析 (1)对无人驾驶汽车,由运动学公式有-2ax =0-v 2①代入数据解得v 0=24 m/s(2)设有人驾驶汽车刹车后经过t 2时间与无人驾驶汽车的速度相同,此时的速度为v 该过程无人驾驶汽车刹车时间为t 2+t 1,其中t 1=1.4 s 对无人驾驶汽车v =v 0-a (t 2+t 1)② 对有人驾驶汽车v =v 0-a ′t 2③联立②③式得t 2=3.6 s ,v =2 m/s 又x 无=v 0+v 2(t 2+t 1)④ x 有=v 0+v 2t 2+v 0t 1⑤ Δx =x 有-x 无⑥联立④⑤⑥,代入数据解得Δx =12.6 m<30 m ,即两车不会相撞.8.某同学为了测定木块与斜面间的动摩擦因数,他用测速仪研究木块在斜面上的运动情况,装置如图7甲所示.他使木块以初速度v 0=4 m/s 的速度沿倾角θ=30°的斜面上滑紧接着下滑至出发点,并同时开始记录数据,结果电脑只绘出了木块从开始上滑至最高点的v -t 图线如图乙所示.g 取10 m/s 2.求:图7(1)上滑过程中的加速度的大小a 1; (2)木块与斜面间的动摩擦因数μ; (3)木块回到出发点时的速度大小v . 答案 (1)8 m/s 2 (2)0.35 (3)2 m/s解析 (1)由题图乙可知,木块经0.5 s 滑至最高点,由加速度定义式a =ΔvΔt 有:上滑过程中加速度的大小:a 1=v 0Δt 1=40.5m /s 2=8 m/s 2(2)上滑过程中木块沿斜面向下受重力的分力、摩擦力作用,由牛顿第二定律F =ma 得上滑过程中有:mg sin θ+μmg cos θ=ma 1 代入数据得:μ≈0.35.(3)下滑的距离等于上滑的距离:x =v 202a 1=422×8m =1 m下滑过程中摩擦力方向变为沿斜面向上,由牛顿第二定律F =ma 得: 下滑过程中:mg sin θ-μmg cos θ=ma 2 解得:a 2≈2 m/s 2下滑至出发点时的速度大小为:v =2a 2x 联立解得:v =2 m/s.9.如图8所示,质量m =1 kg 的物块A 放在质量M =4 kg 木板B 的左端,起初A 、B 静止在水平地面上.现用一水平向左的力F 作用在木板B 上,已知A 、B 之间的动摩擦因数为μ1=0.4,地面与B 之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g =10 m/s 2.求:图8(1)能使A 、B 发生相对滑动的F 的最小值;(2)若F =30 N ,作用1 s 后撤去,要想A 不从B 上滑落,则木板至少多长;从开始到A 、B 均静止,A 的总位移是多少. 答案 (1)25 N (2)0.75 m 14.4 m解析 (1)对于A ,最大加速度由A 、B 间的最大静摩擦力决定,即μ1mg =ma m ,a m =4 m/s 2 对A 、B 整体,F min -μ2(M +m )g =(M +m )a m 得F min =25 N(2)设F 作用在B 上时A 、B 的加速度分别为a 1、a 2,撤掉F 时速度分别为v 1、v 2,撤去外力F 后加速度分别为a 1′、a 2′,A 、B 共同运动时速度为v 3,加速度为a 3, 对于A ,μ1mg =ma 1,a 1=4 m/s 2,v 1=a 1t 1=4 m/s对于B ,F -μ1mg -μ2(M +m )g =Ma 2,a 2=5.25 m/s 2,v 2=a 2t 1=5.25 m/s 撤去外力,a 1′=a 1=4 m/s 2,a 2′=μ1mg +μ2(M +m )g M=2.25 m/s 2经过t 2时间后A 、B 速度相等v 1+a 1′t 2=v 2-a 2′t 2,解得t 2=0.2 s 共同速度v 3=v 1+a 1′t 2=4.8 m/s从开始到A 、B 相对静止时,A 、B 的相对位移即为木板最短的长度LL =x B -x A =v 222a 2-v 23-v 222a 2′-12a 1(t 1+t 2)2=0.75 mA 、B 速度相等后共同在水平面上匀减速运动,加速度a 3=μ2g =1 m/s 2从v 3至最终静止位移为x =v 232a 3=11.52 m所以A 的总位移为x A 总=x A +x =14.4 m.。
高中物理中力学三大观点的综合应用楼㊀倩(兰州市第七中学ꎬ甘肃兰州730000)摘㊀要:本文主要对力学三大观点进行介绍ꎬ对三大观点的优选原则进行分析ꎬ并结合典型例题ꎬ探讨如何利用力学三大观点解决综合性问题.关键词:高中物理ꎻ力学三大观点ꎻ解题应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)06-0083-03收稿日期:2023-11-25作者简介:楼倩(1986.2-)ꎬ女ꎬ甘肃省兰州人ꎬ本科ꎬ中学一级教师ꎬ从事初高中物理教学研究.㊀㊀高中物理中力学三大观点ꎬ即动力学观点㊁能量观点和动量观点.是高考中必考的考点ꎬ具有综合性强㊁难度大的特征ꎬ常常作为考试的压轴题出现.本文对该部分知识进行了分析ꎬ以便加强学生对三大观点的理解和应用.1力学三大观点概述高中物理中的力学三大观点ꎬ包括动力学观点㊁能量观点和动量观点[1].其中动力学观点是结合牛顿第二定律和匀变速直线运动的规律ꎬ求解物体做匀变速直线运动时速度㊁加速度㊁位移等物理量ꎬ涉及运动的细节ꎬ可以用来处理匀变速运动的相关问题ꎻ能量观点是结合动能定理㊁功能关系㊁机械守恒定律和能量守恒定律ꎬ解决功和能之间的关系ꎬ涉及做功和能量转换ꎬ既能解决匀变速运动的相关问题ꎬ也能处理非匀变速运动问题ꎻ动量观点是涉及动量定理和动量守恒定律ꎬ解决过程只涉及物体的初末速度㊁力㊁时间或者只与初末速度有关ꎬ和能量观点一样ꎬ动量观点适用范围既包括匀变速运动ꎬ也包括非匀变速运动问题.2三大观点的选用原则力学的三大观点ꎬ针对的是不同的物理情境ꎬ解决的是不同的问题.如若误用ꎬ就会降低解题效率ꎬ甚至求出错误答案或者求解过程陷入僵局.因此ꎬ需要对三大观点的选用原则有一定的了解.(1)当物理情境为碰撞㊁爆炸㊁反冲等问题ꎬ若只涉及初㊁末速度而不涉及力㊁时间ꎬ且研究对象为一个系统ꎬ优先选用动量守恒定律ꎬ并联立能量守恒定律进行求解ꎬ需注意所研究的问题是否满足守恒的条件.(2)当涉及运动的具体细节时ꎬ考虑动力学观点进行解题ꎬ能量和动量观点均只关注初末状态ꎬ不考虑运动细节.(3)当问题涉及相对位移时ꎬ可优先考虑能量守恒定律.此时系统克服摩擦力所做的功和系统机械能的减少量相等ꎬ即转变为系统的内能.这种解法可以避免对复杂的运动过程进行分析ꎬ简化解题步骤.(4)若在求解问题时ꎬ需要求出各个物理量在某时刻的大小ꎬ则可以优先运用牛顿第二定律.(5)若研究对象为单一物体ꎬ且涉及功和位移问题时ꎬ应优先考虑动能定理.3热点题型分析3.1应用三大动力学观点解决碰撞㊁爆炸模型例1㊀如图1所示ꎬ水平地面上放置有P㊁Q两个物块ꎬ两者相距L=0.48mꎬP物块的质量为1kgꎬ38Q物块的质量为4kgꎬP物块的左侧和一个固定的弹性挡板接触.已知P物块与水平地面间无摩擦ꎬ且其和弹性挡板碰撞时无能量损失ꎬQ物块与水平地面有摩擦且动摩擦因数为0.1ꎬ重力加速度取10m/s2.某一时刻ꎬP以4m/s的初速度朝着物块Q运动并和其发生弹性碰撞ꎬ回答以下问题:图1㊀例1题图(1)P物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小各为多少?(2)P物块与Q物块第二次碰撞后ꎬ物块Q的瞬间速度大小为多少?解析㊀(1)第一次弹性碰撞后瞬间两物块的速度分别为v1和v2ꎬ有m1v0=m1v1+m2v2ꎬ12m1v02=12m1v21+12m2v22ꎬ求解得v1=-125m/sꎬv2=85m/s.因此ꎬP物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小分别为125m/s㊁85m/s.(2)设碰后Q的加速度为aꎬ则有μmg=ma.假设第二次碰撞前Q没有停止运动ꎬ有x+2L=|v1|t1ꎬx=v2t1-12at21ꎬ解得t1=0.8s.假设第二次碰撞前Q已经停止运动ꎬ有v2=at2ꎬ解得t2=1.6s.所以第二次碰撞前Q没有停止运动.设第二次碰撞前的瞬间ꎬP的速度为vPꎬQ的速度为vQ.碰撞后瞬间ꎬP的速度为vPᶄꎬQ的速度为vQᶄꎬ则:vQ=v2-at1m1vP+m2vQ=m1vPᶄ+m2vQᶄ12m1vP2+12m2vQ2=12m1vPᶄ2+12m2vQᶄ2vP=-v1解得vQᶄ=3625m/s.例2㊀有一组机械组件ꎬ由螺杆A和螺母B组成ꎬ因为生锈难以分开ꎬ图2为装置剖面示意图.某同学将该组件垂直放置于水平面上ꎬ在螺杆A顶端的T形螺帽与螺母B之间的空隙处装入适量火药并点燃ꎬ利用火药将其 炸开 .已知螺杆A的质量为0.5kgꎬ螺母的质量为0.3kgꎬ火药爆炸时所转化的机械能E=6JꎬB与A的竖直直杆间滑动摩擦力大小恒为f=15Nꎬ忽略空气阻力ꎬ重力加速度g=10m/s2.图2㊀例2题图(1)求火药爆炸瞬间螺杆A和螺母B各自的速度大小ꎻ(2)忽略空隙及螺母B的厚度影响ꎬ要使A与B能顺利分开ꎬ求螺杆A的竖直直杆的最大长度L.解析㊀(1)设火药爆炸瞬间螺杆A的速度大小为v1ꎬ螺母B的速度大小分别为v2ꎬ以竖直向下为正方向ꎬ根据能量守恒定律和动量守恒定律ꎬ有0=m1v1+m2v2E=12m1v21+12m2v22求解得v1=-3m/sꎬv2=5m/sꎬ因此杆A的速度大小为3m/sꎬ方向竖直向上ꎻ螺母B的速度大小为5m/sꎬ方向坚直向下.(2)A相对B向上运动ꎬ所受摩擦力f向下ꎬ则对螺杆A由牛顿第二定律可得m1g+f=m1a1ꎬ解得a1=40m/s2ꎬ方向竖直向下.对螺母B由牛顿第二定律可得f-m2g=m2a2ꎬ解得a2=40m/s2ꎬ方向竖直向上.火药爆炸后ꎬA向上做匀减速直线运动ꎬ其减速至零的时间为t1=v1a1=340s.B向下做匀减速直线运动ꎬ其减速至零的时间为t1=v2a2=540s.所以B一直做匀减速运动ꎬA则先做匀减速将速度减至为0而后做匀加速运动ꎬ当两者速度相等时刚好分开ꎬ此时直杆的长度最大.取向下为正方向ꎬ可得v2-a2t3=-v1+a1t3ꎬ解得t3=0.1s.则直杆长度的最大值为L=(v1+v2)t32ꎬ解得L=0.4m.3.2应用三大动力学观点解决多过程问题例3㊀竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接ꎬ小物块B静止48于水平轨道的最左端ꎬ如图3(a)所示.t=0时刻ꎬ小物块A在倾斜轨道上从静止开始下滑ꎬ一段时间后与B发生弹性碰撞(碰撞时间极短)ꎻ当A返回到倾斜轨道上的P点(图中未标出)时ꎬ速度减为0ꎬ此时对其施加一外力ꎬ使其在倾斜轨道上保持静止.物块A运动的v-t图像如图3(b)所示ꎬ图中的v1和t1均为未知量.已知A的质量为mꎬ初始时A与B的高度差为Hꎬ重力加速度大小为gꎬ不计空气阻力.(a)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(b)图3㊀示意图(1)物块B的质量为多少?(2)物体A在图3(b)所描述的运动过程中ꎬ克服摩擦力做了多少功?(3)已知A物块和B物块和轨道间的摩擦因数是相等的.当物块B停止运动后ꎬ将物块和轨道间的摩擦因数改变ꎬ然后从P点释放物块Aꎬ其运动一段时间后ꎬ刚好能和物块B正好碰上.求改变前后摩擦因数的比值.解析㊀(1)根据图3(b)ꎬ可以得出在t1时刻ꎬ两物块发生了碰撞ꎬ物块A的速度由碰撞前的v1变为碰撞后的v12.碰撞问题ꎬ运用动量守恒和能量守恒观点进行分析ꎬ设物块B的质量为mBꎬ其碰撞后的瞬间速度大小为vB.则有mv1=m(-v12)+mBvB12mv21=12m(-12v1)2+12mBv2B解得mB=3m.(2)求物体A在运动过程中克服摩擦力所做的功的大小ꎬ需要结合能量观点和动力学观点进行求解.设物体A和轨道之间的滑动摩擦力为fꎬP点距地面的高度为hꎬ碰撞前物体A走过的路程为s1ꎬ碰撞之后走过的路程为s2.碰撞之前ꎬ物体A的速度由0加速至v1ꎬ该过程重力做正功ꎬ摩擦力做负功ꎬ根据动能定理ꎬ有mgH-fs1=12mv21-0碰撞之后ꎬ物体A的速度由v12减速至0ꎬ该过程重力和摩擦力均做负功ꎬ根据动能定理ꎬ有-(fs2+mgh)=0-12m(-v12)2在整个过程中ꎬ物体克服摩擦力做功的大小为W=fs1+fs2由图3(b)的v-t图像可知s1=12v1t1s2=12ˑv12ˑ(1.4t1-t1)且s1和s2存在几何关系s2s1=hH联立可得W=215mgH.(3)设轨道和地面之间的夹角为θꎬ改变前的动摩擦因数为μ有W=μmgcosθH+hsinθ设物块B在水平轨道上能够滑行的距离为sᶄꎬ由动能定理有-μmᶄgsᶄ=0-12mᶄvᶄ2设改变后的动摩擦因数为μᶄꎬ依据动能定理有mgh-μᶄmgcosθ hsinθ-μᶄmgsᶄ=0联立可得μμᶄ=119.4结束语总之ꎬ当运用力学三大观点进行解题时ꎬ关键在于明确研究对象和其所经历的物理过程ꎬ并能够根据问题ꎬ应用合适的观点进行求解.该类题对学生的综合素质要求较高ꎬ教学过程切不可机械化㊁模板化ꎬ教师要引导学生多思考㊁多总结ꎬ达到 讲一题会一类 的教学效果ꎬ培养学生的解题思维.参考文献:[1]李得天.利用力学的三大观点解高考力学压轴题[J].高中数理化ꎬ2022(20):34-35.[责任编辑:李㊀璟]58。
热点专题系列(五)动力学、动量和能量观点在力学中的应用热点概述:处理力学问题的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律)。
熟练应用三大观点分析和解决综合问题是本专题要达到的目的。
[热点透析]动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量定理和动量守恒观点解题,可处理非匀变速运动问题。
2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的动力学关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律(机械能守恒定律)去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换,这种问题由于作用时间都极短,因此用动量守恒定律去解决。
(2020·湖北省七市州教科研协作体高三下学期5月联考)如图甲所示,在光滑水平面上有一小车,其质量M=2 kg,车上放置有质量m A=2 kg的木板A,木板上有可视为质点的物体B,其质量m B=4 kg。
已知木板A与小车间的动摩擦因数μ0=0.3。
A 、B 紧靠车厢前壁,A 的左端与小车后壁间的距离为x =2 m 。
现对小车施加水平向右的恒力F ,使小车从静止开始做匀加速直线运动,经过1 s 木板A 与车厢后壁发生碰撞,该过程中A 的速度—时间图象如图乙所示,已知重力加速度大小g =10 m/s 2,最大静摩擦力等于滑动摩擦力。
专题二:力与物体的直线运动(第1课时动力学观点在力学中的应用)考向1 运动学基本规律的应用例1 (2014·新课标Ⅰ·24)公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s .当汽车在晴天干燥沥青路面上以108 km/h 的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.(g取10 m/s 2)为了迎接外宾,对国宾车队要求非常严格.设从同一地点先后开出甲、乙两辆不同型号的国宾汽车在平直的公路上排成直线行驶.汽车甲先开出,汽车乙后开出.汽车甲从静止出发先做加速度为a 1的匀加速直线运动,达到速度v 后改为匀速直线运动.汽车乙从静止出发先做加速度为a 2的匀加速直线运动,达到同一速度v 后也改为匀速直线运动.要使甲、乙两辆汽车都匀速行驶时彼此间隔的间距为x .则甲、乙两辆汽车依次启动的时间间隔为多少?(不计汽车的大小) 考向2 挖掘图象信息解决动力学问题例2 如图甲所示,在倾角为37°的粗糙且足够长的斜面底端,一质量m =2 kg 可视为质点的滑块压缩一轻弹簧并锁定,滑块与弹簧不相连.t =0 s 时解除锁定,计算机通过传感器描绘出滑块的速度时间图象如图乙所示,其中Ob 段为曲线,bc 段为直线,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的是( ) A .在0.15 s 末滑块的加速度为-8 m/s 2B .滑块在0.1~0.2 s 时间间隔内沿斜面向下运动C .滑块与斜面间的动摩擦因数μ=0.25D .在滑块与弹簧脱离之前,滑块一直在做加速运动(2014·福建·15)如图所示,滑块以初速度v 0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零.对于该运动过程,若用h 、s 、v 、a 分别表示滑块的下降高度、位移、速度和加速度的大小,t 表示时间,则下列图象最能正确描述这一运动规律的是( )考向3 应用动力学方法分析传送带问题例3 如图所示,一水平传送带以4 m/s 的速度逆时针传送,水平部分长L =6 m ,其左端与一倾角为θ=30°的光滑斜面平滑相连,斜面足够长,一个可视为质点的物块无初速度地放在传送带最右端,已知物块与传送带间的动摩擦因数μ=0.2,g =10 m/s 2.求物块从放到传送带上到第一次滑回传送带最远端所用的时间.(2014·河南豫东豫北名校五模)如图所示,与水平方向成37°角的传送带以恒定速度v=2 m/s顺时针方向转动,两传动轮间距L=5 m.现将质量为1 kg且可视为质点的物块以v0=4 m/s的速度沿传送带向上的方向自底端滑上传送带.物块与传送带间的动摩擦因数为μ=0.5,取g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8,计算时,可认为滑动摩擦力近似等于最大静摩擦力,求物块在传送带上上升的最大高度.综合应用:应用动力学方法分析“滑块—木板模型”问题例4如图所示,水平地面上有一质量为M的长木板,一个质量为m的物块(可视为质点)放在长木板的最右端.已知m与M之间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2.从某时刻起物块m以v1的水平初速度向左运动,同时木板M在水平外力F作用下始终向右以速度v2(v2>v1)匀速运动,求:(1)在物块m向左运动过程中外力F的大小;(2)木板至少多长物块不会从木板上滑下来?变式训练:如图所示,倾角α=30°的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8 m、质量M=3 kg的薄木板,木板的最右端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.题组1 运动学基本规律的应用1.酒后驾驶会导致许多安全隐患,其中之一是驾驶员的反应时间变长,“反应时间”是指驾驶员从发现情况到开始采取制动的时间.下表中“反应距离”是指驾驶员从发现情况到采取制动的时间内汽车行驶的距离;“刹车距离”是指驾驶员从踩下刹车踏板制动到汽车停止的时间内汽车行驶的距离.分析上表可知,下列说法正确的是( )A.驾驶员正常情况下反应时间为0.4 s B .驾驶员酒后反应时间比正常情况下多0.5 s C .汽车刹车时,加速度大小为10 m/s 2 D .汽车刹车时,加速度大小为7.5 m/s 22.(2014·新课标Ⅱ·24)2012年10月,奥地利极限运动员菲利克斯·鲍姆加特纳乘气球升至约39 km 的高空后跳下,经过4分20秒到达距地面约1.5 km 高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录.取重力加速度的大小g =10 m/s 2.(1)若忽略空气阻力,求该运动员从静止开始下落至1.5 km 高度处所需的时间及其在此处速度的大小; (2)实际上,物体在空气中运动时会受到空气的阻力,高速运动时所受阻力的大小可近似表示为f =k v 2,其中v 为速率,k 为阻力系数,其数值与物体的形状、横截面积及空气密度有关.已知该运动员在某段时间内高速下落的v —t 图象如图所示.若该运动员和所带装备的总质量m =100 kg ,试估算该运动员在达到最大速度时所受阻力的阻力系数.(结果保留1位有效数字)题组2 挖掘图象信息解决动力学问题3.(2014·新课标Ⅱ·14)甲、乙两汽车在一平直公路上同向行驶.在t =0到t =t 1的时间内,它们的v —t 图像如图2所示.在这段时间内( ) A .汽车甲的平均速度比乙的大 B .汽车乙的平均速度等于v 1+v 22C .甲、乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大4.(2014·辽宁省大连二模)如图所示,一个m =3 kg 的物体放在粗糙水平地面上,从t =0时刻起,物体在水平力F 作用下由静止开始做直线运动.在0~3 s 时间内物体的加速度a 随时间t 的变化规律如图所示,已知物体与地面间的动摩擦因数处处相等.则( )A .在0~3 s 时间内,物体的速度先增大后减小B .3 s 末物体的速度最大,最大速度为10 m/sC .2 s 末F 最大,F 的最大值为12 ND .前2 s 内物体做匀变速直线运动,力F 大小保持不变5.2013年12月14日21时11分,嫦娥三号着陆器成功降落在月球虹湾地区,实现中国人的飞天梦想.该着陆器质量为1.2×103 kg ,在距离月球表面100 m 处悬停,自动判断合适着陆点后,竖直下降到距离月球表面4 m 时速度变为0,然后关闭推力发动机自由下落,直至平稳着陆.若月球表面重力加速度是地球表面重力加速度的16倍,着陆器下降过程中的高度与时间关系图象如图4所示,则下述判断正确的是( ) A .着陆器在空中悬停时,发动机推力大小是1.2×104 NB .着陆器从高100 m 下降至4 m 过程中的平均速度为8 m/sC .着陆器着陆时的速度大约是3.65 m/sD .着陆器着陆后,对月球表面的压力是2×104 N 题组3 应用动力学方法分析传送带问题6.(2014·四川·7)如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图像可能是( )7.如图甲所示,水平传送带AB 逆时针匀速转动,一个质量为M =1.0 kg 的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点).已知传送带的速度保持不变,g 取10 m/s 2.求: (1)物块与传送带间的动摩擦因数μ; (2)物块在传送带上的运动时间; (3)整个过程中系统产生的热量.题组4 应用动力学方法分析“滑块—木板模型”问题8.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg9.如图甲所示,由斜面AB 和水平面BC 组成的物块,放在光滑水平地面上,斜面AB 部分光滑,AB 长度为s =2.5 m ,水平部分BC 粗糙.物块左侧与竖直墙壁之间连接着一个力传感器,当传感器受压时示数为正值,被拉时为负值.上表面与BC 等高且粗糙程度相同的木板DE 紧靠在物块的右端,木板DE 质量M =4 kg ,长度L =1.5 m .一可视为质点的滑块从A 点由静止开始下滑,经B 点由斜面转到水平面时速度大小不变.滑块从A 到C 过程中,传感器记录到力和时间的关系如图乙所示.g 取10 m/s 2,求:(1)斜面AB 的倾角θ;(2)滑块的质量m ; (3)滑块到达木板DE 右端时的速度大小.。
专题强化练5动力学、能量和动量观点在力学中的应用1.如图所示,学生练习用头颠球。
某一次足球由静止自由下落80 cm,被重新顶起,离开头部后竖直上升的最大高度仍为80 cm。
已知足球与头部的作用时间为0.1 s,足球的质量为0.4 kg,重力加速度g取10 m/s2,不计空气阻力,下列说法正确的是()A.头部对足球的平均作用力为足球重力的10倍B.足球下落到与头部刚接触时动量大小为3.2 kg·m/sC.足球与头部作用过程中动量变化量大小为3.2 kg·m/sD.足球从最高点下落至重新回到最高点的过程中重力的冲量大小为3.2 N·s2.(2022·江苏常熟中学高二期中)如图所示,足够长的光滑细杆PQ水平固定,质量为2m的物块A穿在杆上,可沿杆无摩擦滑动。
质量为0.99m的物块B通过长度为L的轻质细绳竖直悬挂在A上,整个装置处于静止状态,A、B可视为质点。
若把A固定,让质量为0.01m的子弹以v0的速度水平射入物块B(时间极短,子弹未穿出)后,物块B恰好能到达水平杆PQ位置,重力加速度为g,则()A.在子弹射入物块B的过程中,子弹和物块B构成的系统动量和机械能都守恒B.子弹射入物块B的初速度v0=100gLC.若物块A不固定,子弹仍以v0射入,物块B仍能摆到水平杆PQ位置D.若物块A不固定,子弹仍以v0射入,当物块B摆到最高点时速度大小为2gL 33.(2023·山东青岛二中高二期中)如图所示,质量为M的长木板静止在光滑水平面上,上表面OA段光滑,AB段粗糙且长为l,左端O处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F 。
质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落。
重力加速度为g 。
则( )A .细绳被拉断后瞬间木板的加速度大小为FmB .细绳被拉断瞬间弹簧的弹性势能为14m v 2C .弹簧恢复原长时滑块的动能为12m v 2D .滑块与木板AB 间的动摩擦因数为v 22gl4.如图所示,小球A 放于小球B 正上方(两球直接接触且球心连线竖直),两小球同时由距水平地面高度为H 的地方由静止释放,设两小球间碰撞和球B 与地面的碰撞均为弹性碰撞且作用时间极短,小球B 的质量是小球A 质量的3倍,忽略两小球大小,不计空气阻力,求小球A 反弹后能上升的最大高度。
专题二力与物体的直线运动第1课时动力学观点在力学中的应用(限时:45分钟)1.(2011·新课标全国·21)如图1所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是()图12.如图2所示绘出了轮胎与地面间的动摩擦因数分别为μ1和μ2时,紧急刹车时的刹车痕迹(即刹车距离s)与刹车前车速v的关系曲线,则μ1和μ2的大小关系为()图2A.μ1<μ2B.μ1=μ2C.μ1>μ2D.条件不足,不能比较3.如图3甲所示,倾角为30°的足够长的光滑斜面上,有一质量m=0.8 kg的物体受到平行斜面向上的力F作用,其大小F随时间t变化的规律如图乙所示,t=0时刻物体速度为零,重力加速度g=10 m/s2.下列说法中正确的是()图3A.0~1 s时间内物体的加速度最大B.第2 s末物体的速度不为零C.2~3 s时间内物体向下做匀加速直线运动D.第3 s末物体回到了原来的出发点4.酒后驾驶会导致许多安全隐患,是因为驾驶员的反应时间变长.反应时间是指驾驶员从发现情况到采取制动的时间.下表中“思考距离”是指驾驶员发现情况到采取制动的时间内汽车行驶的距离;“制动距离”是指驾驶员发现情况到汽车停止行驶的距离(假设汽车制动时的加速度大小都相同).A.驾驶员正常情况下反应时间为0.5 sB.驾驶员酒后反应时间比正常情况下多0.5 sC.驾驶员采取制动措施后汽车加速度大小为3.75 m/s2D.若汽车以25 m/s的加速度行驶时,发现前方60 m处有险情,酒后驾驶不能安全停车5.传送机的皮带与水平方向的夹角为α,如图4所示,将质量为m的物体放在皮带传送机上,随皮带一起向下以加速度为a(a>g sin α)匀加速直线运动,则()图4A.小物体受到的静摩擦力的方向一定沿皮带向上B.小物体受到的静摩擦力的方向一定沿皮带向下C.小物块受到的静摩擦力的大小可能等于mg sin αD.小物块受到的静摩擦力的大小可能等于零6.小朋友滑滑梯可简化成如图5所示的物理模型:滑梯视为放在水平地面上的斜劈,从斜面的顶端滑下做匀加速直线运动的小朋友视为质点.已知斜劈质量为M,小朋友质量为m,重力加速度为g.则小朋友沿斜面下滑过程中(斜劈保持不动),关于斜劈所受地面摩擦力的方向及所受地面支持力N的大小,下列判断正确的是()图5A.向左,N=(M+m)gB.向左,N<(M+m)gC.向右,N=(M+m)gD.向右,N>(M+m)g7.如图6所示,质量为m的球置于斜面上,被一竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法正确的是()图6A.若加速度足够小,竖直挡板对球的弹力可能为零B.若加速度足够大,斜面对球的弹力可能为零C.斜面和挡板对球的弹力的合力等于maD.若F增大,斜面对球的弹力仍然保持不变8.如图7所示,斜面体B静置于水平桌面上.一质量为M的木块A从斜面底端开始以初速度v0上滑,然后又返回出发点,此时速度为v,且v<v0.在上述过程中斜面体一直静止不动,以下说法正确的是()图7A.桌面对B的静摩擦力的大小保持不变B.桌面对B始终有水平向左的静摩擦力C.物体A受到的摩擦力恒定不变D.A上滑时比下滑时桌面对B的支持力大9.物块M在静止的传送带上匀速下滑时,传送带突然转动,传送带转动的方向如图8中箭头所示.则传送带转动后()图8A.M将减速下滑B.M仍匀速下滑C.M受到的摩擦力变小D.M受到的摩擦力变大10.(14分)某公共汽车的运行非常规则,先由静止开始匀加速启动,当速度达到v1=10 m/s时再做匀速运动,进站前开始匀减速制动,在到达车站时刚好停住.公共汽车在每个车站停车时间均为Δt=25 s.然后以同样的方式运行至下一站.已知公共汽车在加速启动和减速制动时加速度大小都为a =1 m/s 2,而所有相邻车站间的行程都为x =600 m ,有一次当公共汽车刚刚抵达一个车站时,一辆电动车刚经过该车站一段时间t 0=60 s ,已知该电动车速度大小恒定为v 2=6 m/s ,而且行进路线、方向与公共汽车完全相同,不考虑其他交通状况的影响,试求:(1)公共汽车从车站出发至到达下一站所需的时间t 是多少?(2)若从下一站开始计数,公共汽车在刚到达第n 站时,电动车也恰好同时到达此车站,n 为多少?11. (14分)中央电视台近期推出了一个游戏节目——推矿泉水瓶.选手们从起点开始用力推瓶一段时间后,放手让瓶向前滑动,若瓶最后停在桌上有效区域内,视为成功;若瓶最后不停在有效区域内或在滑行过程中倒下均视为失败.其简化模型如图9所示,AC 是长度为L 1=5 m 的水平桌面,选手们可将瓶子放在A 点,从A 点开始用一恒定不变的水平推力推瓶,BC 为有效区域.已知BC 长度为L 2=1 m ,瓶子质量为m =0.5 kg ,瓶子与桌面间的动摩擦因数μ=0.4.某选手作用在瓶子上的水平推力F =20 N ,瓶子沿AC 做直线运动,(g 取10 m/s 2)假设瓶子可视为质点,那么该选手要想游戏获得成功,试问:图9(1)推力作用在瓶子上的时间最长不得超过多少? (2)推力作用在瓶子上的距离最小为多少?12.(14分)如图10所示,在倾角θ=37°的固定斜面上放置一质量M =1 kg 、长度L =3 m 的薄平板AB .平板的上表面光滑,其下端B 与斜面底端C 的距离为7 m .在平板的上端A 处放一质量m =0.6 kg 的滑块,开始时使平板和滑块都静止,之后将它们无初速度释放.设平板与斜面间、滑块与斜面间的动摩擦因数均为μ=0.5(sin 37°=0.6,cos 37°=0.8,g = 10 m/s 2).求:图10(1)滑块滑至C 点时的速度大小;(2)滑块与平板下端B 到达斜面底端C 的时间差Δt .答案1.A 2.C 3.C 4.C 5.BC 6.B 7.D 8.B 9.B 10.(1)70 s (2)12 11.(1)16s (2)0.4 m 12.(1)8 m/s (2)1.65 s。
高一物理《动量、动力学和能量观点在力学中的应用》知识
点总结
一、解决力学问题的三个基本观点和五个规律
二、力学规律的选用原则
1.如果物体受恒力作用,涉及运动细节可用动力学观点去解决.
2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.
3.若研究的对象为几个物体组成的系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.
4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.
5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.。
动力学动量和能量观点在力学中的应用哎呀,今天咱们聊聊动力学,动量和能量这两位小伙伴在力学中的应用。
听起来可能有点抽象,但其实说白了,就是讲讲物体是怎么动的,为什么会动,还有动了之后的表现。
这事儿可有意思了,咱们的日常生活中随处可见这俩家伙的身影,就像小偷一样,没注意就来了。
动量这东西就像个顽皮的小孩子,谁都管不了。
你想啊,动量跟物体的质量和速度有关系。
简单来说,重的东西,或者跑得快的东西,动量就大。
想象一下,你在马路上看到一辆大货车跟一辆小电动车碰面,嘿嘿,这俩的动量差得可大了!货车在那儿稳稳的,小电动车就像一片落叶,瞬间被推得老远。
你说,这就是动量的魅力呀!可见,动量在碰撞时可是扮演了关键角色,不然后果不堪设想,简直是一场闹剧。
接着再聊聊能量。
能量就像是个无处不在的精灵,时刻忙碌着。
动能、势能,这两种能量是力学中最常见的。
想想你在滑滑梯,滑下去的时候那叫一个爽,那就是动能在作怪。
你坐在上面,一动不动的时候,势能就像个温文尔雅的绅士,静静等着你一跃而下。
这俩的转换就像是个精妙的舞蹈,真是让人目不暇接。
再说说,动量守恒定律和能量守恒定律。
动量守恒就好比说,“兄弟我不离你,咱俩一起走!”碰撞后,俩物体的动量总和保持不变,像是一对好兄弟,相互扶持。
能量守恒就更加牛了,能量不会凭空消失,只有转移,转个弯儿,变个样子。
像是你钱包里的钱,可能从一个口袋到另一个口袋,结果还是在你身上,嘿嘿,这就是聪明的能量。
说到应用,咱们生活中随处可见。
开车的时候刹车,动量让你体验“突如其来”的感觉,能量又在车轮和地面之间转换,噼里啪啦,一系列的物理现象在上演。
尤其是那些疯狂的赛车场面,动量和能量的争夺战更是精彩绝伦。
一个转弯,车子就像脱缰的野马,没个准头,动量和能量在一瞬间变得无比重要。
还有那些运动员,像跳高、跳远,都是动量和能量的好朋友。
运动员在起跳的那一刻,动量和能量完美结合,飞向空中就像鸟儿一样。
想象一下,运动员腾空而起,那一刻的优雅和力量,真是让人心潮澎湃。
2020高考物理专题复习动力学动量和能量观点在力学中的应用一动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律.2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.【例题1】(2019·全国卷3·25).静止在水平地面上的两小物块A、B,质量分别为m A=l.0kg,m B=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。
某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为E k=10.0J。
释放后,A沿着与墙壁垂直的方向向右运动。
A、B与地面之间的动摩擦因数均为u=0.20。
重力加速度取g=10m/s²。
A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。
(1)求弹簧释放后瞬间A、B速度的大小;(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少?【答案】(1)v A=4.0m/s,v B=1.0m/s;(2)A先停止;0.50m;(3)0.91m;【解析】【分析】首先需要理解弹簧释放后瞬间的过程内A、B组成的系统动量守恒,再结合能量关系求解出A、B各自的速度大小;很容易判定A、B都会做匀减速直线运动,并且易知是B先停下,至于A是否已经到达墙处,则需要根据计算确定,结合几何关系可算出第二问结果;再判断A向左运动停下来之前是否与B发生碰撞,也需要通过计算确定,结合空间关系,列式求解即可。
专题二力与物体的直线运动
第1课时动力学观点在力学中的应用
(限时:45分钟)
1.一辆汽车在平直的公路上从静止运动,先后经历匀加速、匀速、匀减速直线运动最后停止.从汽车启动开始计时,下表记录了汽车某些时刻的瞬时速度,根据数据可判断出汽车运动的v-t() 时刻/s 1.0 2.0 3.0 5.07.09.510.5
速度/(m·s-1) 3.0 6.09.012129.0 3.0
2.设物体运动的加速度为a、速度为v,位移为x,现有四个不同物体的运动图象如图所示,t=0时刻物体的速度均为零,则其中物体做单向直线运动的图象是()
3.如图1所示,物体以初速度v0冲上足够长的粗糙斜面,下图中关于物体位移x与时间t 关系的图象可能正确的是()
图1
4.甲、乙两车在同一水平路面上做直线运动,某时刻乙车在前、甲车在后,相距x=6 m,从此刻开始计时,乙做匀减速运动,两车运动的v-t图象如图2所示.则在0~12 s内关于两车位置关系的判断,下列说法正确的是()
图2
A.t=4 s时两车相遇
B.t=4 s时两车间的距离最大
C.0~12 s内两车有两次相遇
D.0~12 s内两车有三次相遇
5.在离地相同高度处,质量分别为m1和m2的球1与球2同时由静止开始下落,由于空气阻力的作用,两球在抵达地面前均已达到匀速运动状态.已知空气阻力与球的下落速度v 成正比,即f=-k v(k>0),且两球的比例常数k完全相同,两球下落的v-t关系如图3所示,则下列叙述正确的是()
图3
A.m1=m2,两球同时抵达地面
B.m2>m1,球2先抵达地面
C.m2<m1,球2先抵达地面
D.m2>m1,球1先抵达地面
6.如图4所示,人站在自动扶梯的水平踏板上,扶梯启动过程,人随扶梯斜向上匀加速运动,以下说法正确的是()
图4
A .人只受到重力和支持力的作用
B .人处于超重状态
C .人受到的支持力方向垂直于扶梯斜面斜向上
D .人受到静摩擦力,方向水平向右
7.如图5所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量
均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ
3
,已知最大静
摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是
( )
图5
A .a =μg
B .a =
2μg 3
C .a =
μg
3
D .a =F 2m -μg
38.如图6所示,一轻质弹簧的上端固定在升降机的天花板上,下端挂一小球,在升降机沿竖
直方向向下匀速运动的过程中,小球相对于升降机静止.若升降机突然停止运动,设空气阻力可忽略不计,弹簧始终在弹性限度内,且小球不会与升降机的内壁接触,则以升降机为参照系,小球在继续下降的过程中
( )
图6
A .速度逐渐减小,加速度逐渐减小
B .速度逐渐增大,加速度逐渐减小
C .速度逐渐减小,加速度逐渐增大
D .速度逐渐增大,加速度逐渐增大
9.如图7所示,水平传送带AB 距离地面的高度为h ,以恒定速率v 0顺时针运行.甲、乙两
滑块(可视为质点)之间夹着一个压缩轻弹簧(长度不计),在AB 的正中间位置轻放它们时,
弹簧立即弹开,两滑块以相同的速率分别向左、右运动.下列判断正确的是()
图7
A.甲、乙滑块可能落在传送带的左右两侧,且距释放点的水平距离可能相等
B.甲、乙滑块可能落在传送带的左右两侧,但距释放点的水平距离一定不相等
C.甲、乙滑块可能落在传送带的同一侧,且距释放点的水平距离一定相等
D.甲、乙滑块可能落在传送带的同一侧,但距释放点的水平距离一定不相等10.(13分)某段平直的公路上,一辆小汽车以v1=90 km/h的速度行驶,其前方一辆货车以v2=72 km/h的速度行驶,当它们之间的距离Δx1=200 m时,小汽车转入超车道并以a1=2 m/s2的加速度提速准备超车,小汽车的最大速度控制在v m=108 km/h.当小汽车与货车并行时,货车以a2=1 m/s2的加速度减速,当小汽车超出货车Δx2=22 m时转回行车道,超车过程结束.求:
(1)小汽车从准备超车到与货车并行所经历的时间;
(2)小汽车从与货车并行到完成超车驶过的距离.
11.(13分)下雨后路面湿滑,给人们的出行和交通运输带来极大的影响.已知汽车轮胎与干燥柏油路面的动摩擦因数为μ1,与雨后湿滑的柏油路面的动摩擦因数为μ2,当汽车以初速度v0沿干燥水平柏油路面行驶时,若在A处急刹车后(急刹车后车轮立即停止转动),
汽车要滑行一段距离到B处才能停下;若该汽车以同样的速度v0在干燥水平柏油路面OA间行驶,突然发现前方从A处开始路面有水湿滑,而在B处设有障碍物需要紧急停车,如图8所示,欲使汽车不撞上障碍物,则汽车至少应在距A点多远处开始急刹车?
图8
12.(13分)如图9所示,一长为L=18 m的传送带水平放置,可以看成质点的物块静止于传送带的左端,物块与传送带之间的动摩擦因数为μ=0.2.(g=10 m/s2)
(1)若传送带突然以v=4 m/s的速度顺时针匀速转动,求物块在传送带上运动的时间;
(2)若传送带先以a=3 m/s2的加速度顺时针匀加速启动,2 s后改做匀速运动.求物块在
传送带上运动的时间.
图9
答案
1.C2.C3.AB4.D5.B6.B7.CD8.C9.AC 1 0.(1)20.625 s(2)60 m
11.(μ1-μ2)v20
2μ21g
12.(1)5.5 s(2)4.5 s。