13.2.3-边角边
- 格式:ppt
- 大小:787.50 KB
- 文档页数:12
华东师大版八年级上册数学说课稿《13.2.3边角边》一. 教材分析《13.2.3边角边》是华东师大版八年级上册数学的一节内容。
本节课的主要内容是让学生掌握边角边(SAS)的全等判定方法,并能够运用该方法解决实际问题。
在教材中,通过引入全等三角形的概念,引导学生探究全等三角形的性质,进而引入边角边(SAS)判定方法。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析八年级的学生已经学习了三角形的基本概念和性质,对全等三角形有一定的了解。
但是,对于边角边(SAS)判定方法的理解和运用还需要进一步的引导和培养。
此外,学生在学习过程中可能对全等三角形的判定方法产生混淆,需要通过实例和练习进行区分和巩固。
三. 说教学目标1.知识与技能目标:让学生掌握边角边(SAS)的全等判定方法,能够识别全等三角形。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的观察能力、动手能力和思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 说教学重难点1.教学重点:掌握边角边(SAS)的全等判定方法,能够运用该方法解决实际问题。
2.教学难点:对全等三角形的判定方法进行区分和运用,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、实物模型、练习题等,帮助学生直观地理解全等三角形的判定方法,并提供足够的练习机会。
六. 说教学过程1.导入:通过展示一些全等三角形的图片,引导学生思考全等三角形的性质和判定方法。
2.探究:学生分组进行探究,通过观察和操作,发现全等三角形的性质和边角边(SAS)判定方法。
3.讲解:教师对全等三角形的性质和边角边(SAS)判定方法进行讲解,引导学生理解和掌握。
4.练习:学生进行练习,教师给予指导和反馈,帮助学生巩固所学知识。
13.2.3 边角边掌握全等三角形的判定(S.A.S.),会进行全等的简单推理.重点会用S.A.S.证明两个三角形全等.难点应用综合法的格式证明三角形全等.一、动手操作教师活动:按教材第63页要求同排两个同学各画一个三角形,再放在一起判断它们是否全等.二、探究新知要画一个三角形与教师在黑板上画的三角形ABC全等,需要几个与边或角的大小有关的条件呢?1.画一画(1)只给一个条件:一条边BC=6 cm,大家画出三角形,小组交流画的三角形全等吗?一个角∠B=30°,大家画出三角形,小组交流画的三角形全等吗?(2)给出两个条件画三角形时,有几种可能的情况?这两个三角形一定会全等吗?分别按照下面的条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等.①三角形的一个内角为60°,一条边为3 cm;②三角形的两个内角分别为30°和70°;③三角形的两条边分别为3 cm和5 cm.你们在画图和同学比较过程中,能得出什么结论?学生各抒己见后,教师归纳:你们一定会发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等.2.议一议如果给出三个条件画三角形,你能说出有哪几种可能的情况?教师讲解:如果两个三角形有3组对应相等的元素,那么含有以下四种情况:两边一角、两角一边、三角、三边.我们将对这四种情况分别进行讨论.如果两个三角形有两条边和一个角分别对应相等,这两个三角形一定全等吗?如图所示,此时应该有两种情况,一种是角夹在两条边的中间,形成两边夹一角;另一种情况是角不夹在两边的中间,形成两边一对角.(1)已知两边一夹角作三角形唯一性的体验教师提出问题,我们按下面的条件画一个三角形.如图,已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形.把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?换两条线段和一个角试试,看看是否有同样的结论.教师边讲边按下述步骤作图,要求学生模仿:第1步:画一条线段AB,使它等于3 cm;第2步:画∠MAB=45°;第3步:在射线AM上截取AC=2.5 cm;第4步:连结BC.△ABC即为所求.通过学生亲自实践,初步体会已知三角形两边一夹角作三角形的确定性,为证明S.A.S.提供实践体验.(2)S.A.S.的证明教师给出证明S.A.S.定理的条件:如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠B=∠B′,BC=B′C′,我们要证明这两个三角形是全等的.由于AB=A′B′,我们移动其中的△ABC,使点A与点A′、点B与点B′重合.因为∠B=∠B′,因此可以使∠B与∠B′的另一边BC与B′C′重叠在一起,而BC=B′C′,因此点C与点C′重合,这就说明这两个三角形全等.由此可得判定三角形全等的一种简便方法:两边及其夹角分别相等的两个三角形全等,简记为S.A.S.(或边角边).(3)已知两边一对角问题探究教师提出问题:如图,已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边画一个三角形.把你画的三角形与其他同学画的三角形进行比较,那么所有的三角形都全等吗?此时符合条件的三角形的形状能有多少种呢?上图中,∠B=45°,AB=3 cm,AC=AC′=2.5 cm,可以看出.我们可以作出两个不全等的三角形,可见已知两个三角形的两边和其中一边的对角分别对应相等,三角形不一定全等.三、练习巩固1.如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.2.如图,AB∥CD,AB=CD.求证:AD∥BC.四、小结与作业小结1.两边一夹角分别对应相等,两个三角形全等.2.两边和其中一边的对角分别对应相等,两个三角形不一定全等.作业教材第76页习题13.2第2题.这节课学习全等三角形的判定方法,通过学生画一画、比一比,得出基本事实S.A.S.,再利用S.A.S.证明两个三角形全等.教师应着重强调角应为夹角,防止学生任意找两边及一角证明两个三角形全等.学生刚学严格证明,应注意强化,条理要清晰,说理有据,因果关系分明.变量与函数一、选择题(每题4分,共12分)1.某型号的汽车在路面上的制动距离s=,其中变量是〔〕A.s,vB.s,v2C。
课题§13.2.3三角形全等的条件(边角边)▲导学卡一、学习目标:1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程二、学习任务:1.温故互查:①两个三角形若有三组对应元素相等,此时会出现的情况有哪些?②认真研读课本P62,说出两边一角对应相等,可分为哪些情况?2.探索新知:活动一探索三角形全等的条件1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?(2)由(1)中的回答,你能得到什么猜想?2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动二全等三角形判定的简单应用1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD =CB (已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:活动三:思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?” 画一画:三角形的两条边分别为4cm 和3cm ,长度为3cm 的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。
▲训练卡一 、基础题(60分)1.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:AB ∥CD二、提升题:(40分)2.如图,已知AB =AC ,AD =AE ,∠1=∠2.求证:△ABD ≌△ACE。