数学建模第六章最优化方法建模--6.1引言
- 格式:ppt
- 大小:364.00 KB
- 文档页数:12
数学建模计算方法优化数学建模是一种重要的数学方法,它通过建立数学模型来描述和解决实际问题。
数学建模的核心是求解数学模型,而计算方法是实现数学建模的基础工具。
为了提高数学建模的效率和精确性,优化计算方法变得尤为关键。
本文将从数学建模的概念和计算方法的优化角度,探讨数学建模计算方法的优化策略。
首先,我们需要明确数学建模的概念。
数学建模是将实际问题转化为数学问题,并通过构建数学模型来描述和求解。
在实际问题中,常常会涉及到多个变量、多个约束条件和多个目标函数。
因此,数学建模的计算量会较大,需要借助计算方法来解决。
常见的数学建模方法包括最优化、离散优化、动态规划等。
在数学建模的计算过程中,计算方法的优化可以提高计算的效率和精确性。
计算方法的优化包括提高计算速度和减少计算误差两个方面。
在提高计算速度方面,我们可以采用以下策略。
第一,选择合适的算法。
不同的问题适合采用不同的算法求解,因此选择合适的算法可以充分发挥算法的优势。
例如,在求解大规模线性系统时,可以使用迭代法来替代直接法,从而减少计算量和计算时间。
第二,优化算法参数。
算法的效果往往受到参数设置的影响,通过调整算法参数可以提高算法的性能。
例如,对于遗传算法来说,通过调整交叉概率和变异概率可以改善算法的搜索能力。
第三,利用并行计算。
利用并行计算可以将计算任务分解成多个子任务,分别进行计算,然后将结果合并。
这样可以充分利用计算资源,提高计算速度。
例如,可以使用MPI或OpenMP等并行计算框架来实现并行计算。
在减少计算误差方面,我们可以采用以下策略。
第一,提高数值稳定性。
在计算过程中,随着计算的进行,误差会逐渐积累,导致计算结果的不准确。
为了减少误差的积累,我们可以采用提高数值稳定性的方法。
例如,在求解高次多项式方程时,可以使用数值稳定性更好的求解方法,如龙格-库塔法等。
第二,增加数值精度。
计算机内部使用有限位数来表示实数,会导致舍入误差。
为了尽量减少舍入误差,我们可以提高计算的数值精度。
§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。
多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。
例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。
因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。
(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。
(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。
随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。
使用时间俞长,处理价值也俞低。
另外,每次更新都要付出更新费用。
因此,应当如何决定它每年的使用时间,使总的效益最佳。
动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。
(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。
通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。
(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。
各阶段的状态通常用状态变量描述。
常用k x 表示第k 阶段的状态变量。
n 个阶段的决策过程有1+n 个状态。
用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。
即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。
(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量。
决策变量限制的取值范围称为允许决策集合。
用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。
第六章 最优化方法建模本章从生产计划、物资运输、产品试验、资源分配、任务均衡、投资决策等工程技术、经济管理和日常生活中的优化问题出发,建立它们的数学规划模型,着重阐述如何选择决策变量、构造目标函数、确定约束条件,内容涉及线性规划、非线性规划、整数规划、动态规划、多目标规划。
对这些数学规划模型的解法不多做介绍。
§1 优化问题简介优化是我们在工程技术、经济管理等诸多领域中最常遇到的问题之一。
结构设计要在满足强度要求的条件下使所用材料的总重量最轻;编制生产计划要在人力、设备等条件限制下使产品的总利润最高;安排运输方案要在满足物资需求和不超过供应能力条件下使运输总费用最少;确定某种产品如橡胶的原料配方要使它的强度、硬度、变形等多种指标都达到最优。
人们解决这些优化问题的手段大致有以下几种:一是依靠过去的经验,这看来似乎切实可行,且不担风险,但会融入决策者过多的主观因素,从而难以确认所给决策的优越性;二是做大量的试验,这固然真实可靠,却常要耗费太多的资金和人力;三是建立数学模型,求解最优决策。
虽然因建模时要作适当的简化,可能使结果不一定完全可行或达到实际上的最优,但是它基于客观的数据,又不需要太大的费用,具有前两种手段无可比拟的优点。
如果在数学建模的基础上再辅以适当的经验和试验,就可以得到实际问题的一个比较圆满的解答。
在决策科学化、定量化的呼声日渐高涨的今天,这一方法的推广无疑是符合时代潮流和形势发展需要的。
我们经常遇到的优化问题的数学模型是什么样子呢?看一个实例:一项工程有m 个施工点,已知每个施工点对某种材料的需求为),,2,1(m i r i =(单位:吨),施工点的位置坐标为),,2,1(),(m i b a i i =。
现在要设立n 个料场,已知每个料场这种材料的最大容量为(单位:吨)),,2,1(n j q j =。
试确定这n 个料场的位置坐标,及各料场向各施工点的材料运量,在保证施工需求的条件下,使材料运输的总吨公里最小。
数学建模中的最优化算法数学建模是一项综合性强、难度较大的学科,涉及到数学和实际问题的结合。
在数学建模中,最常见的问题是优化问题,即在给定的约束条件下,求出最优解。
最优化算法是解决优化问题的重要手段,包括线性规划、非线性规划、动态规划等。
这些算法在不同的问题中有不同的应用,下面我们将分别介绍。
一、线性规划线性规划是一种数学工具,它可以在一系列线性约束条件下最大化或最小化具有线性关系的目标函数。
在数学建模中,线性规划被广泛应用于资源分配问题、制造流程优化等方面。
线性规划的求解方法主要有单纯形法、对偶理论、内点法等。
其中单纯形法是最常用的方法之一,它通过迭代搜索寻找最优解。
但是对于规模较大的问题,单纯形法的效率会降低,因此近年来对于线性规划的求解,研究者们也开始关注内点法这种算法。
内点法通过可行路径寻找最优解,因此在理论和实际的问题中都有广泛的应用。
二、非线性规划非线性规划主要是解决一些非线性问题,这种问题在实际问题中很常见。
与线性规划不同的是,非线性规划的目标函数往往是非线性的。
非线性规划的求解方法主要有牛顿法、梯度法、共轭梯度法等。
其中,牛顿法是一种迭代法,通过利用函数的一、二阶导数进行求解。
梯度法则是利用函数的一阶导数进行搜索最优解。
共轭梯度法是一种联合使用前两种方法的算法,比前两种算法更加高效。
三、动态规划动态规划是一个将一个问题分解为相互重叠的子问题的技巧,并将子问题的解决方法组合成原问题的解决方法。
动态规划的优势在于能够处理具有重叠子问题和最优子结构等性质的问题。
在数学建模中,动态规划通常被用来处理具有最优子结构的优化问题。
动态规划的求解方法主要有记忆化搜索、状态转移方程等。
其中,记忆化搜索是一种保存结果以便后续使用的技术。
状态转移方程则是一种寻找题目的最优子结构的方法,它通过减小问题规模寻找最优解。
总之,数学建模中的最优化算法是解决现实问题的有效手段。
通过学习和掌握这些算法,我们可以更加深入地理解和解决实际问题。