数学人教版八年级上册等要三角形的性质
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
等腰三角形的性质知识点一、等腰三角形的概念与性质顾名思义,至少有两边相等的三角形叫等腰三角形,这两条边就是等腰三角形的“腰”,另一边叫做“底边”腰和底边的夹角叫做“底角”,两腰的夹角叫做“顶角”如图,过等腰三角形ABC的顶点A,作垂线AD⊥BC于D,则△ADB与△ADC有什么关系?为什么?等腰三角形性质总结:1、两腰相等2、两底角相等3、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(简称:三线合一)例1、等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A、50°,50°,80°B、80°,80°,20°C、100°,100°,20°D、50°,50°,80°或80°,80°,20°例2、等腰三角形中的一个角等于100°,则另两个内角的度数分别为( )A 、40°,40°B 、100°,20°C 、50°,50°D 、40°,40°或100°,20°例3、一个等腰三角形的一边是6,周长是12,则它的三边长分别为_____________1、已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A 、55°,55°B 、70°,40°C 、55°,55°或70°,40°D 、以上都不对2、在下列命题中,正确的是( )A 、等腰三角形是锐角三角形B 、等腰三角形两腰上的高相等C 、两个等腰直角三角形全等D 、等腰三角形的角平分线是中线3、已知等腰三角形的一边长为5cm ,另一边长为6cm ,则它的周长为( )A 、11cmB 、17cmC 、16cmD 、16cm 或17cm4、在ABC ∆中,x BC AC AB ==,,若ABC ∆的周长为24,则x 的取值范围是()A 、121≤≤xB 、120≤<xC 、120<<xD 、126<<x5、三角形一边上的高和这边上的中线重合,则这个三角形一定是( )A 、锐角三角形B 、钝角三角形C 、等腰三角形D 、等边三角形6、若△ABC三条边的长度分别为m,n,p,且()02=-+-pnnm,则这个三角形为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形7、有一个内角为40°的等腰三角形的另外两个内角的度数为______.8、有一个内角为140°的等腰三角形的另外两个内角的度数为________.9、如果△ABC中,AB=AC,它的两边长为2cm和4cm,那么它的周长为________.10、如果等腰三角形的三边均为整数且它的周长为cm10,那么它的三边长为______.11、如果等腰三角形的周长为cm18,那么它的底边x的取值范围是_______.12、已知等腰三角形的一个顶角与一个底角的和为︒110,则其顶角的度数为______.13、等边三角形的周长为cm15,则它的边长为________14、在等腰三角形中,如果顶角是一个底角的2倍,那么顶角等于_____度;如果一个底角是顶角的2倍,那么顶角等于_______度.15、如图,AB=AC,AD⊥BC交BC于点D,BD=5cm,那么BC的长为_________.16、如图,D是等腰三角形ABC的腰AC上一点,DE⊥AC于E,EF⊥AB于F,若∠BDE=158°,则∠DEF=_____.17、如图,在△ABC中,AB=AC,∠A=30°,BD是△ABC的角平分线,求∠ADB的度数。
共顶角顶点的等腰三角形的图形的性质等腰三角形是人教版八年级数学上册第十三章《轴对称》的学习内容,是学习了全等三角形的性质与判定和轴对称的性质后研究的一个重要的几何图形。
对于等腰三角形的考查,教学中多着重于其性质与判定,而以等腰三角形构图从而发现图形性质却成为历年重要考试的一个高频考点,给八年级学生带来很大的困扰。
本文选取其中一个类别:共顶角顶点的等腰三角形,从三个不同的构图视角,去发现、论证其图形的性质。
一、知识点回顾⑴等腰三角形的性质:①在同一个三角形中,相等的两条边所对的角也相等.简称“等边对等角”.②等腰三角形顶角的角平分线与底边上的高、中线互相重合.简称“三线合一”.③等腰三角形是轴对称图形.(对称轴是底边上的高所在的直线)例1、如右图:在△OAB 中,OA =OB . 性质①:∵OA =OB∴∠A =∠B (等边对等角)性质②: ∵OA =OB ,OC ⊥AB∴OC 平分∠AOB ,AC =BC (三线合一)或 ∵OA =OB ,AC =BC ∴OC 平分∠AOB ,OC ⊥AB (三线合一)或 ∵OA =OB ,OC 平分∠AOB ∴AC =BC ,OC ⊥AB (三线合一)⑵等腰三角形的角:已知顶角,可求底角;已知底角,可求顶角.例2、如右图:在△OAB 中,OA =OB . ∵OA =OB ∴∠A =∠B =AOB AOB ∠°=∠°21-902-180∴∠AOB =180º-2∠A =180º-2∠B (三角形的内角和是180º)二、探究构图⑴共顶角顶点且共腰的几个等腰三角形 例3、如右图,OA =OB =OC发现1:已知顶角和,可求底角和;已知底角和,可求顶角和. 证明:∵∠1=180º-2∠7,∠2=180º-2∠6 ∴∠1+∠2=360º-2(∠7+∠6)∠7+∠6=180º-21(∠1+∠2)发现2:∠7+∠6-∠5=90º 证明:∵∠7+∠6=180º-21(∠1+∠2) ∠5=90º-21(∠1+∠2) ∴∠7+∠6-∠5=90º发现3:∠3=21∠2,∠4=21∠1, 证明:∵∠4=∠OCB -∠5 =(90º-21∠2)-[90º-21(∠1+∠2)] =21∠1同理可得:∠3=21∠2小结:构图⑴主要考查“等边对等角”这一性质,而发现角与角之间的关系的方法是等量代换、整体思想和设元导角的方程思想,这也是解决角关系的一般方法。
第1讲 等腰三角形(一)1.等边△ABC 中,D 为AC 的中点,CE =CD .求证:BD =DE .2.如图,AC =AD ,BC =BE ,∠DCE =045,求证:AC ⊥BC .3.如图,已知AC =CD , EF =DF ,AF =AG ,求∠A.一、全等中的几何画图(一)动态画图,周密思考4.如图,AC ⊥BC ,AC =BC ,过G 点任画直线l ,过A 点、B 点分别作l 的垂线AE 、BF ,垂足为E 、F ,试画图探究AE 、BF 与EF 的大小关系.5.如图,1l ∥2l ,∠1=∠2,∠3=∠4,过C 点任画直线交1l 、2l 于E 、F ,试探究AE 、BF 、AB 三线段的数量关系,并证明.6.在ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小.(二)动态画图,由此及彼7.如图∠B=2∠C,AD为∠A的平分线交BC于D点(1) 求证:AB+BD=AC(2) 如图,若AD为∠A的外角平分线,问上结论是否成立,画图证明45.8.如图AC=BC,点O为AB的中点,AC⊥BC,∠MON=0(1) 求证CN+MN=AM(2) 若点M在AC上,点N在BC的延长线上,上结论是否成立,画图证明9.已知Rt △ABC ,∠A =090,AB =AC ,过点B 的直线BF 交直线AC 于D ,CE ⊥BE 于E(1) 当BE 平分∠ABC ,求证:AB +AD =BC ;(2) BE 转到△ABC 外,平分∠ABC 的一个外角,请画出图形,上述结果是否还成立,若成立请说明理由.(一)直角三角形全等问题10.如图,等腰△ABC ,∠ACB =090,D 为CB 延长线上一点,AF =AD ,且AE ⊥AD ,BE 交AC 的延长线于点P .(1) 求证:BP =PE ;(2) 若32 BC BD ,求PCAC 的值.(二)延长、截取法运用11.已知:CA =CB ,AD 平分∠CAB ,且AB =AC +CD ,求证:AC ⊥BC12.如图在平面直角坐标系中,A (0,4),B (4,0),E 点与A 点关于x 轴对称,B 点与F 点 关于y 轴对称,∠GEP =045,交直线AB 于G 点,交直线AF 于P 点,求证:EG 平分 ∠PGB .13.如图1,点A 、B 分别为x 轴、y 轴正半轴上一点,P 为第二象限一点,P A ⊥PB ,P A 交y 轴于点C ,且C 为P A 的中点.(1) 求证:∠PBO =∠P AO ;(2) 已知A (a ,0)、C (0,b ),若()02322=-+-b a ,求P 点的坐标; (3) 如图2,若P A =PB ,求BCOC 的值.第2讲 等腰三角形(二)1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定:(1)等腰三角形定义;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”) 基础回顾例1 如图,△ABC 中,AB >AC ,AD 平分∠BAC ,EF ⊥AD 交BC 延长线于M .(1) 求证:∠BME =21(∠ACB -∠B ); (2) 若EM 平分AD ,求证:∠CAM =∠B .分析:(1)由AD 平分∠BAC ,设∠1=∠2=α,根据内角和定理及外角与内角关系定理,建立∠BME 、∠B 、∠ACB 与α之间的关系式,消去参数α“即得;(2)由EM 垂直平分AD ,得MA =MD ,∠MAD =∠MDA ,于是∠2+∠CAM =∠1+∠B ,得证.证明:点评:(1)问是“设参法”,先建立含有“参数”和相关量的关系式,再消去参数,便得所求证的关系式(2)问则是运用“等边对等角”的性质证明角相等,这种方法是证明角相等的又一方法,例2等腰△ABC 中,过其中一个顶点的直线把这个等腰三角形分成两个等腰三角形,求三内角的度数.分析:按直角、锐角、钝角三角形来分类讨论.解:点评:(1) 当面对的问题情形较多时,应注意分类讨论;(2) 当难以直接计算求角时,可考虑通过建立方程求解.1.若等腰三角形一腰上的高,等于腰长的一半,求这个等腰三角形的顶角.2.如图,过△ABC的顶点A,作直线AE与∠B的内角平分线BE垂直相交于E点,且与∠C的内角平分线交于P点.(1) 直接回答:当∠B与∠C满足什么条件时,点P在△ABC内,在△ABC外,在△ABC 的边上?(2) 若P在△ABC内,过P作PQ∥BC交AB、AC于Q、R.求证:QR=AQ+CR例3如图,△ABC中,AB=7,AC=11,点M是BC中点,AD平分∠BAC,MF∥AD 交AC于F.求FC的长.分析:“角平分线+平行线”易构造等腰三角形,对于中点的条件,类比“倍长中线”的方法,移动CF,构造等腰三角形,寻找CF、AB、AC之间的关系。
人教版数学八年级上册《等腰三角形的性质》教学设计一. 教材分析等腰三角形的性质是初中数学中的重要内容,人教版八年级上册《几何》第三单元“三角形”的第二节。
本节课的主要内容是让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过实例引入等腰三角形的性质,然后通过学生自主探究活动,让学生总结出等腰三角形的性质,最后通过巩固练习,让学生加深对等腰三角形性质的理解。
二. 学情分析学生在七年级已经学习了三角形的有关知识,对三角形的基本概念、性质有一定的了解。
但等腰三角形的性质较为抽象,需要学生通过动手操作、观察、推理等方法,自主探究并掌握。
此外,学生可能对等腰三角形的判定和性质容易混淆,需要老师在教学中进行区分和引导。
三. 教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。
2.过程与方法目标:通过学生自主探究活动,培养学生的观察能力、推理能力、动手操作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的运用。
四. 教学重难点1.重点:等腰三角形的性质。
2.难点:等腰三角形性质的推导和运用。
五. 教学方法1.情境教学法:通过实例引入等腰三角形的性质,让学生在实际问题中感受数学的价值。
2.自主探究法:让学生通过动手操作、观察、推理等方法,自主探究等腰三角形的性质。
3.合作学习法:学生在小组内进行讨论、交流,共同完成学习任务。
4.讲解法:老师对等腰三角形性质进行讲解,引导学生理解并掌握。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、剪刀、彩纸等。
2.学具:学生手册、练习册、彩笔、剪刀、彩纸等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的等腰三角形图片,如:金字塔、蜡烛等,引导学生观察并提问:“这些图形有什么共同的特点?”学生通过观察,发现这些图形都是等腰三角形。
教师总结等腰三角形的定义,并提问:“等腰三角形有哪些性质呢?”从而引出本节课的主题。
第7讲等腰三角形❖基本知识(熟记,会画图,要提问.)(1)(等边对等角).【证明之】(2)等腰三角形的性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一).【证明之】(3)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).【证明之】❖等腰三角形的性质【方程思想计算角度】1、【易】如图,求下列等腰三角形的所有角的度数。
(1)顶角30° (2)底角30°2、【易】计算:(1)等腰三角形的一个角是110°,求其余内角。
(2)等腰三角形的一个角是80°,求其余内角。
(3)已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数。
3、【易】如图所示,在△ABC中,AB=AD=DC,△BAD=26°,求△B和△C的度数.4、【易】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△A、△ADB和△C的度数.5、【中】如图所示,五角星的五个角都是顶角为36°的等腰三角形,则△AMB的度数为______.6、【中】如图,AB=AC,△A=40°,AB的垂直平分线MN交AC于点D,求△DBC的度数.7、【中】如图,等腰△ABC中,AB=AC,△DBC=15°,AB的垂直平分线MN交AC于点D,则△A的度数是_______.【基础证明题】8、【易】如图,AD△BC,点E在AB的延长线上,CB=CE,试猜想△A与△E的大小关系,并说明理由.9、【中】已知:CD平分AB,且CD=AD=BD,求证:△ABC是直角三角形.【如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。
这句话倒过来也是对的,学到矩形时会证明。
】10、【中】如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.【全等法或三线合一法】11、【中】【仿上题】如图,点D 、E 在△ABC 的边BC 上,AB=AC .若BD=CE ,F 为DE 的中点,求证:AF△BC .12、【中】如图,在△ABC 中,AB=AC ,D 为BC 边上一点,△B=30°,△DAB=45°.(1)求△DAC 的度数;(2)求证:DC=AB .13、【难】如图,在△ABC 中,AB=AC ,△ABC 、△ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:△△BCD△△CBE ;△△BAD△△BCD ;△△BDA△△CEA ;△△BOE△△COD ;△△ACE△△BCE ;上述结论一定正确的是________.14、【中】已知:如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE△AB ,DF△AC ,E ,F 分别是垂足,求证:AE=AF .15、【中】如图,已知:AB=AC ,△CAE 是△ABC 的外角,△1=△2.求证:AD △ BC .参考答案1、(1)底角75°;(2)底角30°,顶角120°.2、(1)35°,35°;(2)50°,50°;或80°,20°。
《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。
2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。
2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。
【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。
培养学生勤观察,肯思考的学习习惯。
等腰三角形教学设计
教材分析
1.本小节内容安排在第十四章“轴对称”的第三节。
等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。
这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。
2.本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。
学情分析
1.学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。
2.在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。
另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。
教学目标
知识技能:1、理解掌握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和计算。
数学思考:1、观察等腰三角形的对称性,发展形象思维。
2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能
力。
情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
教学重点和难点
重点:等腰三角形的性质及应用。
难点:等腰三角形的性质证明。
教学过程
教学环节
教师活动预设学生行为设计意图
【活动1】
实践观察,认识等腰三角形出示问题:
(1)把一张长方形的纸片对折,并剪下阴
影部分(如教科书图12.3-1),再把它展开,
得到一个什么图形?
(2)上述过程中得到的△ABC有什么特
点?分别说出它的边、角名称。
教师在学生观察的同时提出问题,在学生充
分发表自己的看法基础上画出图形,介绍
腰、底、顶角、底角。
学生动手剪纸,观察
积极发表自己的看法
为学生提供参与
数学活动的时间
和空间,调动学
生的主观能动
性,激发好奇心
和求知欲
【活动2】探索等腰三角形的性质出示问题:
(1)活动1中剪出的等腰三角形是轴对称
图形吗?把它沿折痕对折,找出其中重合的
线段和角,填空:
相等的线段:
相等的角:
(2)你能猜一猜等腰三角形有什么性质
吗?
教师在学生的猜想基础上引导学生观察、完
善,归纳出性质1、性质2.
本次活动过程中,教师应重点关注:
(1)学生能否从轴对称的概念出发折纸判
定:
(2)学生能否有规范清晰的数学语言说出
自己的猜想;
(3)学生能否归纳全面;
(4)学生在活动和交流中表现出来的参与
意识
动手折纸,观察,完
成填空
各抒己见,说出自
己的猜想
通过学生观察,
教师的引导,归
纳出等腰三角形
的两条性质,在
这个过程中培养
学生自主探究学
习的品质
【活动3】等腰三角形性质定理的证明出示问题
(1)性质1的条件和结论分别是什么?
(2)用数学符号如何表达条件和结论?
(3)如何证明?
教师纠正和补充学生的发言,引导学生利用
全等三角形的性质,根据对称性寻找辅助线
的添加方法。
板书证明过程
(4)受性质1证明的启发,你能证明性质2
吗?
本次活动中,教师应关注:
(1)学生语言的规范性;
(2)学生的应用意识,模仿能力;
(3)学生在活动中发发表个人见解的勇气。
学生分析性质1的条
件和结论,并转换成
数学符号
学生证明
学生模仿证明性质2
培养学生的语言
转换能力,增强
理性认识,体验
性质的正确性,
提高演绎推理的
能力
【活动4】等腰三角形性质定理的运用出示问题
(1)如果等腰三角形的顶角是36°,那么它
的底角的度数是。
(2)在△ABC中,AB=AC, ∠BAC=90°,
AD是BC边上的高,则∠BAD= ,BD
= 。
=
教师评判
(3)如图,在△ABC中,AB=AC,点D在
AC上,且BD=BC=AD,求∠ABC各角的度
数。
教师参与讨论,认真听取学生的分析,引导
学生找出角的关系,书写解答过程。
本次活动中,教师应关注:
(1)学生能否正确运用等腰三角形的性质
解决问题;
(2)学生应用所学知识的应用意识。
学生独立思考解决问
题(1)(2)
学生讨论问题(3)
培养学生正确运
用所学知识的应
用能力,增强应
用意识,参与意
识,巩固所学性
质
【活动5】反馈练习出示练习
(1)等腰三角形一个角是36°,它的另外两
个角是。
(2)等腰三角形一个角是110°,它的另外
两个角是。
(3)如图,在△ABC中,AB=AD=DC,
∠BAD=26°,求∠B和∠C的度数。
教师指导,给出答案。
本次活动中,教师应重点关注:
(1)学生能否正确应用等腰三角形的性质;
(2)学生是否注意到等腰三角形的底角一
定是锐角;
(3)学生是否注意到可能的多种情况。
学生思考,练习
及时巩固所学知
识,了解学生学
习效果,增强学
生应用知识的能
力,同时培养学
生分类讨论的思
想
【活动6】小结与作业:
这节课我们主要学习了什么内容?有哪些收获?教师与学生共同回顾性质,归纳常用辅助线
的添加方法。
教师应关注:
(1)等腰三角形学生的运用;
(2)辅助线的添加;
教师与学生共同回顾
性质,说出收获
巩固学生所学知
识,总结反思,
通过课后独立思
考,自我评价学
习效果。