等效重力场
- 格式:doc
- 大小:2.38 MB
- 文档页数:5
物理等效重力场的应用
物理等效重力场是一种在物理学中使用的概念,它用于描述某些情况下
物体受到的作用力效果,类似于真实的重力场。
在这个概念中,物体可
能不是直接受到真实的重力作用,而是处于一种被称为等效重力场的环
境中。
等效重力场可以通过多种方式产生,其中一种常见的方式是使用加速度。
在某些实验或观测中,为了模拟真实的重力场,可以通过以某种加速度
运动的参考系来产生等效重力场。
在这个参考系中,物体受到的效果就
好像处于真实的重力场中一样。
例如,当人们在航天器中进行太空飞行时,航天器可以通过加速度来产
生等效重力场。
通过调整航天器的加速度,可以使宇航员体验到与地球
上类似的重力效果。
这种等效重力场可以提供一种在太空环境中工作和
生活的模拟重力体验。
物理等效重力场的概念还可以应用于其他领域,例如惯性力场。
在某些
情况下,人们可能需要在非惯性参考系中进行分析和计算,这时可以使
用等效重力场来简化问题。
总之,物理等效重力场是一种模拟真实重力场的概念,在某些情况下被
用于描述物体受力情况。
它通过使用加速度或其他方法,使物体在等效
重力场中受到类似于真实重力的效果。
这个概念在太空探索和其他物理
研究中具有重要的应用。
高三物理等效场知识点等效场是物理学中的一个重要概念,指的是用一个简化的场来描述与实际场具有相似效果的现象。
在高三物理学习中,我们需要掌握等效场的相关知识,下面将从等效电场、等效磁场以及等效重力场三个方面进行介绍。
一、等效电场等效电场是指在某一区域内,由于不同电荷的叠加作用,所产生的总电场。
等效电场的概念可以帮助我们简化电场分析和计算过程。
1. 等效电场的叠加原理当在一空间内存在多个电荷时,它们各自产生的电场可以叠加,得到一个合成的总电场,也就是等效电场。
利用叠加原理,我们可以将复杂电场问题简化为多个简单电荷的电场叠加问题。
2. 等效电场的计算方法过图形分析和几何关系计算等效电场;代数法则通过数学公式和向量的运算计算等效电场。
二、等效磁场等效磁场是指在某一区域内,由于不同磁场的叠加作用,所产生的总磁场。
等效磁场的概念可以帮助我们简化磁场分析和计算过程。
1. 等效磁场的叠加原理当在一空间内存在多个磁场时,它们各自产生的磁场可以叠加,得到一个合成的总磁场,也就是等效磁场。
利用叠加原理,我们可以将复杂磁场问题简化为多个简单磁场的磁场叠加问题。
2. 等效磁场的计算方法过图形分析和几何关系计算等效磁场;代数法则通过数学公式和向量的运算计算等效磁场。
三、等效重力场等效重力场是指在某一区域内,由于不同物体的质量分布和引力的叠加作用,所产生的总重力场。
等效重力场的概念可以帮助我们简化重力场分析和计算过程。
1. 等效重力场的叠加原理当在一空间内存在多个物体时,它们各自产生的重力场可以叠加,得到一个合成的总重力场,也就是等效重力场。
利用叠加原理,我们可以将复杂重力场问题简化为多个简单重力场的重力场叠加问题。
2. 等效重力场的计算方法通过图形分析和几何关系计算等效重力场;代数法则通过数学公式和向量的运算计算等效重力场。
综上所述,等效场是物理学中常用的一种简化描述方式,利用叠加原理和适当的计算方法,我们可以将复杂的现象简化为叠加项的分析问题。
等效重力场的应用在处理一些不是很熟悉的问题时,若能类比熟悉的模型和方法,将较为生疏、不方便处理的问题,转化为熟悉的模型,使用类似的方法来处理,往往可以创造性的解决很多问题。
等效法属于这种创造性解决问题的方法之一,高中物理中但凡涉及恒力、恒定加速度类问题时,若能采取等效重力场——类比重力场中的问题的方式处理,往往可以迅速找到解决问题的突破口。
一、加速运动体系中的等效重力场加速运动体系的典型代表是竖直加速或减速的升降机和水平加速或减速的车辆,当讨论这样的体系中物体所受的弹力、压力、浮力或相对运动等问题,选升降机或者车辆为参考系,引入等效重力场,就可以将运动体系内的问题转化为静止参考系下的问题,从而类比重力场中的静止参考系下问题的处理方法,将复杂问题简化处理。
1、超重失重问题的一种理解方式由牛顿第二定律和牛顿第三定律可知,当升降机具有向上的加速度a 时,其内质量为m 的物体对升降机的压力为N F mg ma =+,此即超重现象;当升降机具有向下的加速度a 时,其内质量为m 的物体对升降机的压力为N F mg ma =-,此即失重现象。
对这个现象,我们可以这样理解:选升降机为参考系,物体静止,如果我们引入等效重力G mg ''=,超重中g g a '=+,失重中g g a '=-,则在升降机参考系中,用平衡条件N 0F mg ''-=和牛顿第三定律N N F F '=即可计算物体对升降机的压力N F G mg ''==。
我们还可以进一步理解成这样:升降机加速度向上,则等效重力G '在原来G 的基础上向下..“超重”了ma ,故G mg mg ma ''==+;升降机加速度向下,则等效重力G '在原来G 的基础上向上..“超重”了ma ,故矢量合成结果是G mg mg ma ''==-。
将等效重力场法运用到底物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。
此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。
那么,如何实现这一思想方法呢?一、概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、处理方法的迁移例 1 如图所示,倾角的光滑绝缘斜面处于水平向右的匀强电场中,电场强度,有一个质量为的带电小球,以速度沿斜面匀速下滑,求:(1)小球带何种电荷?电荷量为多少?(2)在小球匀速下滑的某一时刻突然撤去斜面,此后经内小球的位移是多大?(取)解析:(1)由于小球匀速运动,所受重力与电场力的合力和斜面对小球的支持力平衡,如图可知,小球必带正电,且,所以;从“等效重力场”观点看,实际上就是小球所受等效重力与斜面对小球的支持力平衡,故等效重力大小、等效重力加速度大小可分别表示为、。
(2)撤去斜面后,小球仅受等效重力作用,且具有与等效重力方向垂直的初速度,所以小球做“平抛运动”(严格地讲是类平抛运动,这里只是为了方便说明和处理,以下带引号的名称意义同样如此。
),基本处理的方法是运动的分解。
如图,小球在轴方向做匀速直线运动,在轴方向做“自由落体运动”,则有,其中,,解得:,所以内的总位移大小为考虑到分析习惯,实际处理时可将上述示意图顺时针转过角,让小球的运动和重力场中的平抛运动更接近。
等效重力场法运用等效重力场法是一种在地球物理勘探中常用的方法,用于计算地下物质分布的重力效应。
它基于物体具有引力场的基本原理,通过对地下物质分布进行建模和计算,推断出地下结构的性质。
本文将对等效重力场法的原理、应用以及优缺点进行详细介绍。
等效重力场法的原理是利用地下物质分布对地球重力场的影响进行计算。
地球的引力场是由地球质量分布所产生的,地下物质的分布会导致地球引力场的微小变化。
等效重力场法通过观测地球引力场的变化来推断地下物质分布的特征。
在等效重力场法中,首先需要进行重力测量。
重力测量是利用重力仪器对地球引力进行测量的过程,通过测量不同地点的重力值,可以得到不同地点的地球引力场强度。
然后,将重力数据进行处理和分析,得到地下物质分布的等效重力场。
等效重力场法的应用十分广泛。
首先,它可以用于勘探矿产资源。
由于不同地质构造对地球引力场的影响不同,因此可以通过等效重力场法来判断地下是否存在矿产资源。
其次,等效重力场法还可以用于勘探地下水源。
由于地下水具有一定的质量和分布特征,因此通过等效重力场法可以推断地下水的分布情况。
此外,在地质灾害预测和地下工程勘探中,等效重力场法也能够提供有用的信息。
然而,等效重力场法也存在一些局限性。
首先,等效重力场法只能提供地下物质分布的整体特征,对于细节信息的提供较为有限。
其次,等效重力场法需要进行大量的数据处理和分析工作,且结果的解释和判断需要结合其他地球物理勘探方法来进行综合分析。
最后,等效重力场法对观测仪器的精度要求较高,误差的累积可能会影响结果的准确性。
综上所述,等效重力场法是一种重要的地球物理勘探方法,通过观测地球重力场的变化来推断地下物质分布的特征。
它在矿产勘探、地下水资源勘探以及地质灾害预测等领域具有广泛的应用。
然而,等效重力场法也存在一些局限性,需要注意其数据处理和分析的准确性,以及与其他地球物理勘探方法的综合应用。
在未来的研究中,可以进一步改进等效重力场法的理论和技术,提高其精度和可靠性,以更好地应用于实际勘探工作中。
等效重力场是指通过对物体施加适当的加速度来模拟重力场的场。
在高考物理中,等效重力场的应用主要体现在下列几个方面:
1.自由落体运动:在等效重力场中,物体的自由落体运动与在真实重力场中的运动类似,
可以用自由落体公式y=1/2gt^2来描述。
2.弹性力学:等效重力场可以用来研究弹性物体在重力场中的运动。
3.空气阻力:等效重力场可以用来研究空气阻力对物体运动的影响。
4.物理实验:等效重力场可以用来研究物理实验中重力场的影响,如重力加速度等。
5.飞行器设计:等效重力场也可用来模拟飞行器在重力场中的运动,帮助设计飞行器。
高考物理等效重力场笔记应该涵盖上述几点的知识点,并且结合例题和模拟实验等实际应用进行讲解。
圆周运动等效重力场问题(找等效最高点、最低点问题)绳拉物体在竖直平面内做圆周运动规律B 最高点最低点(平衡位置)临界最高点:重力提供向心力,速度最小速度最大、拉力最大等效重力场:重力场、电场等叠加而成的复合场;等效重力:重力、电场力的合力A 处理思路:①受力分析,计算等效重力(重力与电场力的合力)的大小和方向②在复合场中找出等效最低点、最高点。
最高、低点:T 与等效重力共线③根据圆周运动供需平衡结合动能定理列方程处理例 1:光滑绝缘的圆形轨道竖直放置,半径为R,在其最低点 A 处放一质量为 m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为3mg ,方向水平向右,现给小球一个水平向右的初速3度 v0,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求v0及运动过程中的最大拉力变式 1:如图所示,ABCD为表示竖立放在场强为E=10 4V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD部分是半径为R 的半圆环,轨道的水平部分与半圆环相切 A 为水平轨道的一点,而且AB R0.2m.把一质量m=100g、带电 q=10-4C 的小球,放在水平轨道的 A 点上面由静止开始被释放后,在轨道的内侧运动。
( g=10m/s2)求:(1)它到达 C 点时的速度是多大?(2)它到达 C 点时对轨道压力是多大?(3)小球所能获得的最大动能是多少?B O例 2:在水平方向的匀强电场中,用长为 3 L的轻质绝缘细线悬挂一质量为m的带电小球,小球静止在 A 处,悬线与竖直方向成300角,现将小球拉至 B 点,使悬线水平,300并由静止释放,求小球运动到最低点 D 时的速度大小C V C AV C DY变式 2:质量为的 m小球连在穿过光滑水平面上的小孔的绳子末端运动 , 线速度为 v( 1)求此时绳子上的拉力, 使小球在平面内绕O点做半径为a 圆周( 2)若将绳子瞬间放松后又拉直,将做半径为 b 的圆周运动,求放松时间( 3)小球做半径为 b 的圆周运动时绳子的拉力练习 1:如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度L0.40m 的绝缘细绳把质量为 m 0.10kg 、带有正电荷的金属小球悬挂在O 点,小球静止在现将小球拉至位置 A 使细线水平后由静止释放,求:⑴小球通过最低点 C 时的速度的大小;⑵小球通在摆动过程中细线对小球的最大拉力B 点时细绳与竖直方向的夹角为37 。
等效重力场
等效重力场就是把一个和重力场同一方向的匀强场等效为重力场。
如一个匀强电场方向竖直向下,那物体受到的力就是电场力加上重力,相当于1+1=2,本质相同都是力,而且两个场所提供的力方向相同,所以可以等效。
在重力场中竖直平面问题绳拉物体在竖直平面内做圆周运动规律,最高点、最低点平衡位置、临界最高点:重力提供向心力,速度最小。
带电物体在匀强电场中且考虑重力时提出的一个等效概念,在匀强电场中,电场力恒定,物体重力也恒定,因此合力恒定。
2024版新课标高中物理模型与方法“等效重力场”模型目录一.“等效重力场”模型解法综述二.“等效重力场”中的直线运动模型三.“等效重力场”中的抛体类运动模型四.“等效重力场”中的单摆类模型五.“等效重力场”中的圆周运动类模型一.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二.“等效重力场”中的直线运动模型【运动模型】如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30° ①S AB=12g t2 ②由①②两式解得t=3L g“等效重力场”的直线运动的几种常见情况匀速直线运动匀加速直线运动匀减速直线运动1如图所示,相距为d的平行板A和B之间有电场强度为E、方向竖直向下的匀强电场.电场中C点距B板的距离为0.3d,D点距A板的距离为0.2d,有一个质量为m的带电微粒沿图中虚线所示的直线从C点运动至D点,若重力加速度为g,则下列说法正确的是()A.该微粒在D点时的电势能比在C点时的大B.该微粒做匀变速直线运动C.在此过程中电场力对微粒做的功为0.5mgdD.该微粒带正电,所带电荷量大小为q=mg E【答案】 C【解析】 由题知,微粒沿直线运动,可知重力和电场力二力平衡,微粒做匀速直线运动,微粒带负电,B、D 错误;微粒从C点运动至D点,电场力做正功,电势能减小,A错误;此过程中电场力对微粒做的功为W= Fx=mg(d-0.3d-0.2d)=0.5mgd,C正确.2(2023·全国·高三专题练习)AB、CD两块正对的平行金属板与水平面成30°角固定,竖直截面如图所示。
等效重力场专题物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。
此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。
那么,如何实现这一思想方法呢?一、概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、处理方法的迁移练习:1. 在光滑水平面上的O 点系一长为L 的绝缘细线,线的另一端系一质量为m 、带电量为q 的小球,如图所示.当沿细线方向加上场强为E 的匀强电场后,小球处于平衡状态,现给小球一垂直于细线的初速度0v ,使小球在水平面上开始运动.若0v 很小,则小球第一次回到平衡位置所需时间为A .2B .C .D .无法确定2. 如右图所示,在方向水平的匀强电场中,一个不可伸长的不导电细线一端连着一个质量为m 的带电小球,另一端固定于O 点.把小球拉起直至细线与场强平行,然后无初速释放.已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ,若在此过程中线始终绷紧,求(1)小球经过最低点时细线对小球的拉力. (2) 小球在什么位置时速度最大.3. 已知如图,匀强电场方向水平向右,场强m v E /105.16⨯=,丝线长L=40cm ,上端系于O 点,下端系质量为41.010m kg -=⨯,带电量为104.910q C -=+⨯的小球,将小球从最低点A 由静止释放,求:⑴小球摆到最高点时丝线与竖直方向的夹角多大? ⑵摆动过程中小球的最大速度是多大?4. 如图所示,固定的半圆形绝缘光滑轨道置于正交的匀强电场和匀强磁场叠加的区域中。
等效重力场等效重力场重力场、电场叠加而成的复合场 等效重力重力、电场力的合力 等效重力加速度等效重力与物体质量的比值 等效“最低点”物体自由时能处于稳定平衡状态的位置 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积 竖直上抛运动在电场强度为E,方向竖直向下的匀强电场中,以V 0初速度竖直向上发射一个质量为m 带电量为q 的带正电小球,求上升的最大高度。
类平抛运动例:如图所示,在方向竖直向下的匀强电场中,一绝缘轻细线一端固定于O 点,另一端系一带正电的小球在竖直平面内做圆周运动.小球的带电量为q ,质量为m ,绝缘细线长为L ,电场的场强为E ,若带电小球恰好能通过最高点A ,则在A 点时小球的速率v1为多大?小球运动到最低点B 时的速率v2为多大?运动到B 点时细线对小球的拉力为多大?例1:水平放置带电的两平行金属板,相距d,质量为m 的微粒由板中间以某一初速平行于板的方向进入,若微粒不带电,因重力作用在离开电场时,向下偏转d/4,若微粒带正电,电量为q ,仍以相同的初速度进入电场,微粒恰好不再射出电场,则两板的电势差应为多少?并说明上下板间带电性?斜面类问题例5:如图所示,在离坡顶为l 的山坡上的C 点树直固定一根直杆,杆高也是L 。
杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q 、质量为m 的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角30=θ。
若物体从A 点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间。
(2/10s m g =,60.037sin = ,80.037cos =)竖直平面内的圆周运动 例2:水平向右的匀强电场中,用长为R 的轻质细线在O 点悬挂一质量为m 的带电小球,静止在A 处,AO 的连线竖直方向夹角为370,现给小球施加一个沿圆弧切线方向的初速度V 0,小球便在竖直面内运动,为使小球能在竖直面内完成圆周运动,这个初速度V 0至少应为多大?在最低点时细绳的拉力多大?例3:如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。
“等效重力场法”物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。
此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。
那么,如何实现这一思想方法呢?一、概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、处理方法的迁移例1 如图所示,倾角的光滑绝缘斜面处于水平向右的匀强电场中,电场强度,有一个质量为的带电小球,以速度沿斜面匀速下滑,求:(1)小球带何种电荷?电荷量为多少?(2)在小球匀速下滑的某一时刻突然撤去斜面,此后经内小球的位移是多大?(取)解析:(1)由于小球匀速运动,所受重力与电场力的合力和斜面对小球的支持力平衡,如图可知,小球必带正电,且,所以;从“等效重力场”观点看,实际上就是小球所受等效重力与斜面对小球的支持力平衡,故等效重力大小、等效重力加速度大小可分别表示为、。
(2)撤去斜面后,小球仅受等效重力作用,且具有与等效重力方向垂直的初速度,所以小球做“平抛运动”(严格地讲是类平抛运动,这里只是为了方便说明和处理,以下带引号的名称意义同样如此。
),基本处理的方法是运动的分解。
如图,小球在轴方向做匀速直线运动,在轴方向做“自由落体运动”,则有,其中,,解得:,所以内的总位移大小为考虑到分析习惯,实际处理时可将上述示意图顺时针转过角,让小球的运动和重力场中的平抛运动更接近。
等效重力场解题技巧(一)等效重力场解题技巧引言等效重力场是物理学中的一个重要概念,它常用于解决地理学、天文学等领域的问题。
在解题过程中,我们可以采用一些技巧来简化计算,提高解题效率。
本文将介绍几种常用的等效重力场解题技巧。
技巧一:合并等效重力场将多个等效重力场合并为一个等效重力场,可以简化计算过程。
具体步骤如下:1.将待合并的等效重力场分解为各个独立的力量。
2.根据叠加原理,将等效重力场的大小与方向进行合并。
3.对于合并后的等效重力场,重新计算其大小与方向。
技巧二:转换为等效重力场问题有时候,我们可以将一个复杂的问题转化为等效重力场问题,从而简化计算。
具体步骤如下:1.分析问题,找出其中所含的不同等效重力场。
2.将问题中的各个等效重力场转化为相应的合成等效重力场。
3.根据叠加原理,计算出最终的等效重力场。
4.使用等效重力场的计算结果解决原问题。
技巧三:利用等效重力场的性质等效重力场具有一些特殊的性质,我们可以利用这些性质来简化计算过程。
以下是一些常见的性质及其应用:1.对称性:如果等效重力场具有对称性,可以通过几何分析和对称性的推断来简化计算。
2.线性性:等效重力场具有叠加原理,可以将不同的等效重力场按线性方式叠加。
3.可加性:等效重力场可以和其他力量进行加法运算,可以将等效重力场与其他力量进行合并计算。
技巧四:利用数学工具辅助计算在解决等效重力场问题时,我们可以借助一些数学工具来辅助计算,提高解题效率。
以下是一些常用的数学工具:1.向量运算:等效重力场通常涉及向量运算,我们可以利用向量运算简化计算过程。
2.矩阵运算:对于复杂的等效重力场计算,矩阵运算可以提供更便捷的计算方法。
3.数值计算方法:有些问题难以用解析方法求解,我们可以采用数值计算方法来获得近似解。
结论等效重力场解题是一项复杂而重要的技巧,在实际应用中有着广泛的应用。
通过合并等效重力场、转化问题、利用性质及数学工具辅助计算,我们可以更高效地解决等效重力场问题。
等效重力场、交变电场、力电综合问题一、带电粒子在力电等效场中的圆周运动1.等效重力场物体仅在重力场中的运动是最常见、最基本的运动,但是对于处在匀强电场和重力场中物体的运动问题就会变得复杂一些.此时可以将重力场与电场合二为一,用一个全新的“复合场”来代替,可形象称之为“等效重力场”.2.3.举例二、带电粒子在交变电场中的运动1.此类题型一般有三种情况:一是粒子做单向直线运动(一般用牛顿运动定律求解);二是粒子做往返运动(一般分段研究);三是粒子做偏转运动(一般根据交变电场的特点分段研究)。
2.分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系。
3.注重全面分析(分析受力特点和运动特点),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件。
4.交变电场中的直线运动(方法实操展示)5.交变电场中的偏转(带电粒子重力不计,方法实操展示)U -t 图轨迹图v y -t 图三、电场中的力、电综合问题1.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
2.处理带电粒子(带电体)运动的方法(1)结合牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)用包括电势能和内能在内的能量守恒定律处理思路 ①利用初、末状态的能量相等(即E 1=E 2)列方程。
①利用某些能量的减少等于另一些能量的增加列方程。
(3)常用的两个结论①若带电粒子只在电场力作用下运动,其动能和电势能之和保持不变。
运用等效法巧解带电粒子在匀强电场中的运动
一、等效法
中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能) 概念的全面类比
搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下: 等效重力场重力场、电场叠加而成的复合场 等效重力
重力、电场力的合力
等效重力加速度等效重力与物体质量的比值
等效“最低点”物体自由时能处于稳定平衡状态的位置
等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积
二、题型归类
(1)单摆类问题(振动的对称性)
例1、如图所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。
求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?
针对训练1、如图,带正电的小球用细绳悬挂在两块无限大的平行板电容器间。
小球悬点O ,摆长为L ,摆球质量为m ,两板间距为d ,两板间加电压为U 。
今向正极板方向将摆球拉到水平位置B 然后无初速释放,小球在B 、A 间来回振动,OA 为竖直线。
求:(1)小球所带电量为多少?
(2)小球最大速率为多少?
g
'
+ O
B A
(3)若要使小球能做完整的圆周运动,在B 点至少需使小球具有多大的竖直向下的初速度?
(2)类平抛运动
例2:水平放置带电的两平行金属板,相距d,质量为m 的微粒由板中间以某一初速平行于板的方向进入,若微粒不带电,因重力作用在离开电场时,向下偏转d/4,若微粒带正电,电量为q ,仍以相同的初速度进入电场,微粒恰好不再射出电场,则两板的电势差应为多少?并说明上下板间带电性?
(3)竖直平面内的圆周运动
例3、如图3-1所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。
整个装置处于场强为E 、方向水平向右的匀强电场中。
现有一质量为
m 的带正电,电量为E mg
q 33=
小球,要使小球能安全通过圆轨道,在O 点的初速度应为多大?
'
针对训练2、水平向右的匀强电场中,用长为R 的轻质细线在O 点悬挂一质量为m 的带电小球,静止在A 处,AO 的连线与竖直方向夹角为370,现给小球施加一个沿圆弧切线方向的初速度V0,小球便在竖直面内运动,为使小球能在竖直面内完成圆周运动,这个初速度V0至少应为多大?
例4:“最低点”类问题
如图1-1所示,ab 是半径为R 的圆的一条直径,该圆处于匀强电场中,匀强电场与圆周在同一平面内。
现在该平面内,将一带正电的粒子从a 点以相同的动能抛出,抛出方向不同时,粒子会经过圆周上不同的点,在这些所有的点中,到达c 点时粒子的动能最大。
已知∠cab=30°,若不计重力和空气阻力,试求:(1)电场方向与ac 间的夹角θ。
(2)若小球在a 点时初速度方向与电场方向垂直,则小球恰好能落在c 点,那么初动能为多大?
针对训练3、(09海淀)如图所示,BD 是竖直平面内圆上的一条竖直直径,AC 是该圆的
另一条直径,该圆处于匀强电场中,场强方向平行于圆周平面。
将带等量 负电荷的相同小球从O 点以相同的动能射出,射出方向不同时,小球会经过圆 周上不同的点,在这些所有的点中,到达A 点时小球的动能总是最小。
忽略空 气阻力,则下列说法中正确的是( )
A .可以断定电场方向由O 点指向圆弧AE
B 上的某一点 B .到达B 点时小球的动能和电势能之和总是最小
C .到达C 点时小球的电势能和重力势能之和总是最小
D .对到达圆上的所有小球中,机械能最小的小球应落在圆弧CFD 上的某一点 (4)、斜面类问题
例5、如图所示,一根对称的“Λ”型玻璃管ABC 置于竖直平面内,管与水平面夹角为θ=300 , 一侧管长为L=2m ,管对称线OO ′的左侧的空间存在竖直向上的匀强电场E1,管对称线OO ′的右侧的
c
B
B
空间存在与竖直方向成0
30=α,大小为E2的匀强电场。
质量为m ,带正电电量为q 的小球在管内从A 点由静止开始运动,且与管壁的摩擦系数为μ,如果小球在B 端与管作用没有机械能量损失,已知5.0=μ,mg qE 31=,mg qE 32=,求小球从A 点开始至第一次速度为零的位置在何处?
针对训练4、如图1所示,在离坡顶为l 的山坡上的C 点树直固定一根直杆,杆高也是L 。
杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q 、质量为m 的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角
30=θ。
若物体从A 点由静止开始沿绳无摩擦的滑
下,设细绳始终没有发生形变,求物体在细绳上滑行的时间。
(2/10s m g =,60.037sin = ,
80.037cos = )
(5)、斜抛类问题
例6、如图5-1所示,匀强电场水平向右,310=E N/C ,一带正电的油滴的质量
5100.2-⨯=m kg ,电量5
100.2-⨯=q C 。
在A 点时速度大小为20=v m/s ,方向为竖直向上,则油
滴在何时速度最小且求出最小速度?
A
E
针对训练5、(10宣武一模)如图所示,一个质量为m,带电量为+q的微粒,从a点以大小为v0的初速度竖直向上射入水平方向的匀强电场中。
微粒通过最高点b时的速度大小为2v0,方向水平向右。
求:
(1)该匀强电场的场强大小E;
(2)a、b两点间的电势差Uab;
(3)该微粒从a点到b点过程中速率的
最小值vmin。