【优化方案】2012高中数学 第3章3.1.3空间向量基本定理精品课件 苏教版选修2-1
- 格式:ppt
- 大小:861.00 KB
- 文档页数:30
3.1.2 共面向量定理[对应学生用书P50]如图,在平行六面体ABCD-A1B1C1D1中,观察下列几组向量,回答问题.问题1:、、可以移到一个平面内吗?提示:可以,因为=,三个向量可移到平面ABCD内.问题2:,,三个向量的位置关系?提示:三个向量都在平面ACC1A1内.问题3:、、三个向量是什么关系?提示:相等.1.共面向量一般地,能够平移到同一平面内的向量叫做共面向量.2.共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数组(x,y),使得p=x a+y b.1.空间中任意两个向量都是共面的,空间中任意三个向量可能共面,也可能不共面.2.向量共面不具有传递性.3.共面向量定理给出了平面向量的表示式,说明两个不共线的向量能确定一个平面,它是判定三个向量是否共面的依据.[对应学生用书P51][例1] 给出以下命题:①用分别在两条异面直线上的两条有向线段表示两个向量,则这两个向量一定不共面; ②已知空间四边形ABCD ,则由四条线段AB 、BC 、CD 、DA 分别确定的四个向量之和为零向量;③若存在有序实数组(x ,y )使得=x +y ,则O 、P 、A 、B 四点共面; ④若三个向量共面,则这三个向量的起点和终点一定共面; ⑤若a ,b ,c 三向量两两共面,则a ,b ,c 三向量共面. 其中正确命题的序号是________.[思路点拨] 先紧扣每个命题的条件,再充分利用相关概念做出正确的判断. [精解详析] ①错:空间中任意两个向量都是共面的; ②错:因为四条线段确定的向量没有强调方向; ③正确:因为、、共面, ∴O 、P 、A 、B 四点共面; ④错:没有强调零向量;⑤错:例如三棱柱的三条侧棱表示的向量. [答案] ③[一点通] 共面向量不一定在同一个平面内,但可以平移到同一个平面内.判定向量共面的主要依据是共面向量定理.1.下列说法正确的是________(填序号).①以三个向量为三条棱一定可以作成一个平行六面体;②设平行六面体的三条棱是、、,则这一平行六面体的对角线所对应的向量是++; ③若=12(+)成立,则P 点一定是线段AB 的中点;④在空间中,若向量与是共线向量,则A 、B 、C 、D 四点共面.⑤若a ,b ,c 三向量共面,则由a ,b 所在直线所确定的平面与由b ,c 所在直线确定的平面是同一个平面.解析:①②③⑤不正确,④正确. 答案:④2.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,试问向量p 、q 、r 是否共面?解:设r =x p +y q ,则-7a +18b +22c =x (a +b -c )+y (2a -3b -5c ) =(x +2y )a +(x -3y )b +(-x -5y )c ,∴⎩⎪⎨⎪⎧x +2y =-7,x -3y =18,-x -5y =22.解得⎩⎪⎨⎪⎧x =3,y =-5,∴r =3p -5q .∴p 、q 、r 共面.[例2] 如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:与、共面.[思路点拨] 由共面向量定理,只要用、线性表示出即可. [精解详析] ∵=++ =++13+23=(+13)+(+23)=+++ =+, ∴与、共面.[一点通] 利用向量法证明向量共面问题,关键是熟练的进行向量的表示,恰当应用向量共面的充要条件.解题过程中注意区分向量所在的直线的位置关系与向量的位置关系,解答本题,实质上是证明存在惟一一对实数x ,y 使向量=x +y 成立,也就是用空间向量的加、减法则及运算律,结合图形,用、表示.3.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1和A 1D 1的中点.证明:向量,,是共面向量.证明:法一:=++ =12-+12 =12(+- =12-. 由向量共面的充要条件知,,,是共面向量.法二:连接A1D ,BD ,取A 1D 中点G ,连结FG ,BG ,则有FG 綊12DD 1,BE 綊12DD 1,∴FG 綊BE .∴四边形BEFG 为平行四边形. ∴EF ∥BG .BG ⊆平面A 1BD ,EF 平面A 1BD∴EF ∥平面A 1BD .同理,B 1C ∥A 1D ,∴B 1C ∥平面A 1BD , ∴,,都与平面A 1BD 平行. ∴,,是共面向量.4.已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足=k ,=k (0≤k ≤1).求证:与向量,共面.证明: 如图,在封闭四边形MABN 中,=++.① 在封闭四边形MC 1CN 中,=++② ∵=k , ∴=k (+)∴(1-k )=k ,即(1-k )+k =0, 同理(1-k )+k =0.①×(1-k )+②×k 得=(1-k )+k , ∵=-,∴=(1-k )-k , 故向量与向量,共面.[例3] 如图所示,已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明BD ∥平面EFGH .[思路点拨] (1)要证E ,F ,G ,H 四点共面,根据共面向量定理的推论,只要能找到实数x ,y ,使=x +y 即可.(2)要证BD ∥平面EFGH ,只需证向量与向量、共面即可. [精解详析] (1)如图所示,连接BG ,EG ,则:=+=+12(+)=++=+.由共面向量定理知E ,F ,G ,H 四点共面. (2)设=a ,=b ,=c , 则=-=c -a .=+=-a 2+12(c +b )=-12a +12b +12c ,=+=-12c +12(a +b )=12a +12b -12c .假设存在x ,y ,使=x +y .即c -a =x ⎝ ⎛⎭⎪⎫-12a +12b +12c +y ⎝ ⎛⎭⎪⎫12a +12b -12c =⎝ ⎛⎭⎪⎫y 2-x 2a +⎝ ⎛⎭⎪⎫x 2+y 2b +⎝ ⎛⎭⎪⎫x 2-y2c . ∵a ,b ,c 不共线.∴⎩⎪⎨⎪⎧y 2-x2=-1,x 2+y2=0,x 2-y 2=1,解得⎩⎪⎨⎪⎧x =1,y =-1.∴=-.∴、、是共面向量, ∵BD 不在平面EFGH 内. ∴BD ∥平面EFGH . [一点通]1.空间一点P 位于平面MAB 内的充分必要条件是存在实数对x 、y ,使=x +y .满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式,这个充要条件常用来证明四点共面.在许多情况下,可以用“若存在有序实数组(x ,y ,z )使得对于空间任意一点O ,有=x +y +z ,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据.2.用共面向量定理证明线面平行的关键是: (1)在直线上取一向量;(2)在平面内找出两个不共线的向量,并用这两个不共线的向量表示直线上的向量; (3)说明直线不在面内,三个条件缺一不可.5.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点.求证:B 1C ∥平面ODC 1.证明:设=a ,=b ,=c ,则=c -a ,又O 是B 1D 1的中点,所以=12=12(b -a ).因为D 1D 綊C 1C ,所以=c ,=+=12(b -a )+c .=-12(a +b ),假设存在实数x ,y ,使=x +y ,所以c -a =x ⎣⎢⎡⎦⎥⎤12(b -a )+c -y ·12(a +b ) =-12(x +y )a +x c +⎝ ⎛⎭⎪⎫x 2-y 2b ,且a ,b ,c 不共线,所以x =1,12(x +y )=1,且x -y 2=0,即x =1,y =1.所以=+,所以,,是共面向量,又因为不在,所确定的平面ODC 1内,所以B 1C ∥平面ODC 1.6.如图,已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD ,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心.求证:E 、F 、G 、H 四点共面.证明:分别延长PE 、PF 、PG 、PH 交平面四边形ABCD 各边于M 、N 、Q 、R . ∵E 、F 、G 、H 分别是所在三角形的重心,∴M 、N 、Q 、R 为所在边的中点,顺次连结M 、N 、Q 、R 所得四边形为平行四边形,且有=23,=23, =23,=23. ∵MNQR 为平行四边形, ∴=-=23-23=23=23(+)=23(-)+23(-) =23·⎝ ⎛⎭⎪⎫32 PF -32 PF +23⎝⎛⎭⎪⎫32 PH -32 PF=+.∴由共面向量定理得E 、F 、G 、H 四点共面.向量e 1,e 2,e 3共面⇔存在三个不全为0的实数λ,μ,γ,使得λe 1+μe 2+γe 3=0.若e 1,e 2,e 3是不共面的三个向量,且λe 1+μe 2+γe 3=0(其中λ,μ,γ∈R ),则λ=μ=γ=0.空间一点P 位于平面MAB 内的充要条件是存在惟一的有序实数对x ,y ,使=x +y .[对应课时跟踪训练(十九)]1.下列结论中,正确的是________(填序号). ①若a 、b 、c 共面,则存在实数x ,y ,使a =x b +y c ; ②若a 、b 、c 不共面,则不存在实数x ,y ,使a =x b +y c ;③若a 、b 、c 共面,b 、c 不共线,则存在实数x 、y ,使a =x b +y c .解析:要注意共面向量定理给出的是一个充要条件.所以第②个命题正确.但定理的应用又有一个前提:b 、c 是不共线向量,否则即使三个向量a 、b 、c 共面,也不一定具有线性关系,故①不正确,③正确.答案:②③2.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由向量=15+23+λ确定的点P与A ,B ,C 共面,那么λ=________.解析:∵P 与A ,B ,C 共面, ∴=α+β, ∴=α(-)+β(-), 即=+α-α+β-β =(1-α-β)+α+β, ∴1-α-β+α+β=1. 因此15+23+λ=1.解得λ=215.答案:2153.如图,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1,若=x +y +zAA 1,则x +y +z =________.解析:=-=+-(+)=+23--13=-+13∴x =-1,y =1,z =13.∴x +y +z =13.答案:134.i ,j ,k 是三个不共面的向量,=i -2j +2k ,=2i +j -3k ,=λi +3j -5k ,且A 、B 、C 、D 四点共面,则λ的值为________.解析:若A 、B 、C 、D 四点共面,则向量、、共面,故存在不全为零的实数a ,b ,c , 使得a +b +c =0.即a (i -2j +2k )+b (2i +j -3k )+c (λi +3j -5k )=0. ∴(a +2b +λc )i +(-2a +b +3c )j +(2a -3b -5c )k =0. ∵i ,j ,k 不共面,∴⎩⎪⎨⎪⎧a +2b +λc =0,-2a +b +3c =0,2a -3b -5c =0.∴⎩⎪⎨⎪⎧a =c ,b =-c ,λ=1.答案:15.命题:若A 、B 、C 三点不共线,O 是平面ABC 外一点,=13+13+13,则点M 一定在平面ABC 上,且在△ABC 内部是________命题(填“真”或“假”).解析:=-=-23+13+13=13(-)+13(-)=13(+). 令BC 中点为D ,则=23,∴点M 一定在平面ABC 上,且在△ABC 内部,故命题为真命题.答案:真6.已知A ,B ,C 三点不共线,平面ABC 外的一点O 满足=13+13+13.判断,,三个向量是否共面.解:(1)由已知得++=3, ∴-=(-)+(-), 即=+=--, ∴,,共面.7.若e 1,e 2,e 3是三个不共面的向量,试问向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面,并说明理由.解:法一:令x (3e 1+2e 2+e 3)+y (-e 1+e 2+3e 3)+z (2e 1-e 2-4e 3)=0, 亦即(3x -y +2z )e 1+(2x +y -z )e 2+(x +3y -4z )e 3=0, 因为e 1,e 2,e 3是三个不共面的向量, 所以⎩⎪⎨⎪⎧ 3x -y +2z =0,2x +y -z =0,x +3y -4z =0,解得⎩⎪⎨⎪⎧x =-1,y =7,z =5,从而a =7b +5c ,a ,b ,c 三个向量共面. 法二:令存在λ,μ,使a =λb +μ c 成立, 即3e 1+2e 2+e 3=λ(-e 1+e 2+3e 3)+μ(2e 1-e 2-4e 3), 因为e 1,e 2,e 3是三个不共面向量, 所以⎩⎪⎨⎪⎧3=-λ+2μ,2=λ-μ,1=3λ-4μ.解这个方程组得λ=7,μ=5,从而a =7b +5c ,即a ,b ,c 三向量共面.8.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB .证明:因为H 为BC 的中点,所以=12(+)=12(++++)=12(2+++).因为EF ∥AB ,CD 綊AB ,且AB =2EF , 所以2+=0, 所以=12(+)=12+12.又与不共线,根据向量共面的充要条件可知,,共面.由于FH 不在平面EDB 内, 所以FH ∥平面EDB。
§3.1. 3 空间向量基本定理 编写:陶美霞 审核:赵太田一、知识要点1.空间向量基本定理:如果三个向量123,,e e e 不共面,那么对空间任一向量p ,存在惟一的有序实数组(,,)x y z ,使123p xe ye ze =++其中{}123,,e e e 称为空间的一个基底,123,,e e e 叫做基向量。
2.正交基底:上面的123,,e e e 两两互相垂直时,{}123,,e e e 这个基底就叫正交基底。
3.单位正交基底:若正交基底{}123,,e e e 的三个基向量都是单位向量时,{}123,,e e e 这个正交基底就叫单位正交基底。
4.通常用{},,i j k 表示单位正交基底5.空间向量基本定理的推论:设O A B C 、、、是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(,,)x y z ,使OP xOA yOB zOC =++。
二、典型例题例1.如图:在正方体__OADB CA D B '''中,点E 是AB 与OD 的交点,M 是OD '与CE 的交点,试分别用向量,,OA OB OC 表示向量OD '和OM 。
例2.在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =,试用向量,,OA OB OC 表示向量OG 。
三、巩固练习1.已知空间四边形OABC 中,点,M N 分别是,OA BC 的中点,且,,OA OB OC ===a b c ,试用向量,,a b c 表示向量MN 。
2.如图,在平行六面体__ABCD A B C D ''''中,已知,,DA DC DD '===a b c ,点G 是侧面B BCC ''的中心,试用向量,,a b c 表示下列向量:,,,DB BA CA DG '''。
.3.1.3空间向量基本定理[对应学生用书P53]某次反恐演习中,一特别行动小组获悉:“恐怖分子”将“人质”隐藏在市华联超市往南1 000 m,再往东600 m处的某大厦5楼(每层楼高3.5 m),行动小组迅速赶到目的地,完成解救“人质”的任务.“人质”的隐藏地由华联超市“南1 000 m”、“东600 m”、“5楼”这三个量确定,设e1是向南的单位向量,e2是向东的单位向量,e3是向上的单位向量.问题:请把“人质”的位置用向量p表示出来.提示:p=1 000e1+600e2+14e3.1.空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使p=x e1+y e2+z e3.2.推论设O、A、B、C是不共面的四点,则对空间任意一点P,都存在惟一的有序实数组(x,y,z),使得OP=x OA+y OB+z OC.空间任何一个向量,都可以用空间任意三个向量惟一表示吗?提示:不一定,由空间向量基本定理知,只有三个向量e1,e2,e3不共面时,空间任何一向量才可以用e1,e2,e3惟一表示,否则不可能表示.1.基底和基向量如果三个向量e 1、e 2、e 3不共面,那么空间的每一个向量都可由向量e 1、e 2、e 3线性表示,我们把{e 1,e 2,e 3}称为空间的一个基底,e 1,e 2,e 3叫做基向量.2.正交基底和单位正交基底如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底. 特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i ,j ,k }表示.1.空间向量基本定理表明,用空间三个不共面向量组{a ,b ,c }可以线性表示出空间的任意一个向量,而且表示的结果是惟一的.2.空间中的基底是不惟一的,空间中任意三个不共面向量均可作为空间向量的基底.[对应学生用书P54][例1] 若{a ,b ,c }是空间的一个基底.试判断{a +b ,b +c ,c +a }能否作为该空间的一个基底.[思路点拨] 判断a +b ,b +c ,c +a 是否共面,若不共面,则可作为一个基底,否则,不能作为一个基底.[精解详析] 假设a +b ,b +c ,c +a 共面,则存在实数λ、μ使得a +b =λ(b +c )+μ(c +a ),∴a +b =λb +μa +(λ+μ)c .∵{a ,b ,c }为基底,∴a ,b ,c 不共面. ∴⎩⎪⎨⎪⎧1=μ,1=λ,0=λ+μ.此方程组无解,∴a +b ,b +c ,c +a 不共面.∴{a +b ,b +c ,c +a }可以作为空间的一个基底.[一点通] 空间中任何三个不共面的向量都可以构成空间的一个基底,所以空间中的基底有无穷多个.但是空间中的基底一旦选定,某一向量对这一基底的线性表示只有一种,即在基底{a ,b ,c }下,存在惟一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .证明三个向量能否构成空间的一个基底,就是证明三个向量是否不共面,证明三个向量不共面常用反证法并结合共面向量定理来证明.1.设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一个基底.给出下列向量组: ①{a ,b ,x },②{x ,y ,z },③{b ,c ,z },④{x ,y ,a +b +c }. 其中可以作为空间的基底的向量组有________个.解析:如图所设a =AB ,b =1AA ,c =AD ,则x =1AB ,y =1AD ,z =AC ,a +b +c =1AC .由A ,B 1,D ,C 四点不共面可知向量x ,y ,z 也不共面.同理可知b ,c ,z 和x ,y ,a +b +c 也不共面,可以作为空间的基底.因为x =a +b ,故a ,b ,x 共面,故不能作为基底.答案:32.已知{e 1,e 2,e 3}是空间的一个基底,且OA =e 1+2e 2-e 3,OB =-3e 1+e 2+2e 3,OC =e 1+e 2-e 3,试判断{OA ,OB ,OC }能否作为空间的一个基底?若能,试以此基底表示向量OD =2e 1-e 2+3e 3;若不能,请说明理由.解:假设OA 、OB 、OC 共面,由向量共面的充要条件知,存在实数x 、 y 使OA =x OB +y OC 成立.∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3) =(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∵{e 1,e 2,e 3}是空间的一个基底,∴e 1,e 2,e 3不共面, ∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x 、y 使OA =x OB +y OC , ∴OA ,OB ,OC 不共面.故{OA ,OB ,OC }能作为空间的一个基底, 设OD =p OA +q OB +z OC ,则有2e 1-e 2+3e 3=p (e 1+2e 2-e 3)+q (-3e 1+e 2+2e 3)+z (e 1+e 2-e 3) =(p -3q +z )e 1+(2p +q +z )e 2+(-p +2q -z )e 3. ∵{e 1,e 2,e 3}为空间的一个基底, ∴⎩⎪⎨⎪⎧p -3q +z =2,2p +q +z =-1,-p +2q -z =3,解得⎩⎪⎨⎪⎧p =17,q =-5,z =-30.∴OD =17OA -5OB -30OC .[例2] 如图所示,空间四边形OABC 中,G 、H 分别是△ABC 、△OBC 的重心,设OA =a ,OB =b ,OC =c ,试用向量a、b 、c 表示向量GH.[思路点拨][精解详析] GH =OH -OG ,∵OH =23OD ,∴OH =23×12(OB +OC )=13(b +c ),OG =OA +AG =OA +23AD=OA +23(OD -OA )=13OA +23×12(OB +OC )=13a +13(b +c ), ∴GH =13(b +c )-13a -13(b +c )=-13a ,即GH =-13a .[一点通]用基底表示向量的方法及注意的问题:(1)结合已知条件与所求结论,观察图形,就近表示所需向量.(2)对照目标,将不符合目标要求的向量作为新的所需向量,如此继续下去,直到所有向量都符合目标要求为止.(3)在进行向量的拆分过程中要正确使用三角形法则及平行四边形法则.3. 如图,已知正方体ABCD -A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x 、y 、z 的值.(1)BD '=x AD +y AB +z AA '; (2)AE =x AD +y AB +z AA '. 解:(1)∵BD '=BD +DD ' =BA +BC +DD ' =-AB +AD +AA ', 又BD '=x AD +y AB +z AA ', ∴x =1,y =-1,z =1.(2)∵AE =AA '+A E '=AA '+12A C ''=AA '+12(A B ''+A D '')=AA '+12A B ''+12A D ''=12AD +12AB +AA ' 又AE =x AD +y AB +z AA ' ∴x =12,y =12,z =1.4.如图,四棱锥P -OABC 的底面为一矩形,PO ⊥平面OABC ,设OA =a ,OC =b ,OP =c ,E ,F 分别是PC 和PB 的中点,试用a ,b ,c 表示:BF ,BE ,AE ,EF .解:连接BO ,则BF =12BP =12(BO +OP )=12(c -b -a )=-12a -12b +12c .BE =BC +CE =-a +12CP =-a +12(CO +OP )=-a -12b +12c .AE =AP +PE =AO +OP +12(PO +OC )=-a +c +12(-c +b )=-a +12b +12c .EF =12CB =12OA =12a.[例3] 证明:平行六面体的对角线交于一点,并且在交点互相平分.[思路点拨] 利用空间向量基本定理,只要证明四条对角线的中点与A 点所构成的向量的线性表示是同一种形式即可.[精解详析] 如图所示,平行六面体ABCD -A 1B 1C 1D 1,设点O 是AC 1的中点,则AO =121AC=12(AB +BC +1CC ) =12(AB +AD +1AA ), 设P ,M ,N 分别是BD 1,CA 1,DB 1的中点, 则AP =AB +BP =AB +121BD=AB +12(BA +AD +1DD )=AB +12(-AB +AD +1AA )=12(AB +AD +AA 1),同理可证:AM =12(AB +AD +1AA ),AN =12(AB +AD +1AA ).由此可知,O ,P ,M ,N 四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.[一点通]用空间向量基本定理证明立体几何问题的步骤: (1)作出空间几何体的图形;(2)将立体几何问题转化为空间向量问题,选取一组不共面的向量作基底; (3)用基向量将其它向量表示出来;(4)利用向量的性质得到向量的关系,进而得到几何结论.5.求证:在平行六面体ABCD -A 1B 1C 1D 1中,AC +1AB +1AD =21AC .证明:因为平行六面体的六个面均为平行四边形,所以AC =AB +AD ,1AB =AB +1AA ,1AD =AD +1AA ,∴AC +1AB +1AD=(AB +AD )+(AB +1AA )+(1AD +1AA ) =2(AB +AD +1AA ), 又1AA =1CC ,AD =BC ,∴AB +AD +1AA =AB +BC +1CC =1AC , ∴AC +1AB +1AD =21AC .6.如图,M 、N 分别是四面体O -ABC 的边OA 、BC 的中点,P 、Q 是MN 的三等分点,用向量OA 、OB 、OC 表示OP 和OQ .解:OP =OM +MP =12OA +23MN=12OA +23(ON -OM )=12OA +23(ON -12OA ) =16OA +23×12(OB +OC )=16OA +13OB +13OC . OQ =OM +MQ =12OA +13MN=12OA +13(ON -OM )=12OA +13(ON -12OA ) =13OA +13×12(OB +OC )=13OA +16OB +16OC .1.空间向量基本定理表明,用空间三个不共面的已知向量组{a ,b ,c }可以线性表示出空间任意一个向量,而且表示的结果是惟一的.2.空间任意三个不共面的向量a 、b 、c 皆可构成空间向量的一个基底,因此,基底有无数个,所以基底往往选择具有特殊关系的三个不共面向量作为基底.3.由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个基向量中,就隐含着它们都不是0.[对应课时跟踪训练(二十)]1.空间中的四个向量a ,b ,c ,d 最多能构成基底的个数是________.解析:当四个向量任何三个向量都不共面时,每三个就可构成一个基底,共有4组. 答案:42.如图所示,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE =12OD +x OB +y OA ,则x =________,y =________.解析:∵AE =OE -OA =12OC -OA =12(OD +DC )-OA =12OD +12AB -OA =12OD +12(OB -OA )-OA =12OD +12OB -32OA , ∴x =12,y =-32.答案:12 -323.已知空间四边形OABC ,其对角线为AC 、OB ,M 、N 分别是OA 、BC 的中点,点G 是MN 的中点,取{OA ,OB ,OC }为基底,则OG =________.解析: 如图,OG =12(OM +ON )=12OM +12×12(OB +OC ) =14OA +14OB +14OC =14(OA +OB +OC ). 答案:14(OA +OB +OC )4.平行六面体ABCD -A ′B ′C ′D ′中,若AC '=x AB +2y BC -3z CC ',则x +y +z =________.解析:∵AC '=AB +BC +CC '=x AB +2y BC -3z CC ', ∴x =1,2y =1,-3z =1, 即x =1,y =12,z =-13.∴x +y +z =1+12-13=76.答案:765.设a 、b 、c 是三个不共面向量,现从①a +b ,②a -b ,③a +c ,④b +c ,⑤a +b -c 中选出一个使其与a 、b 构成空间向量的一个基底,则可以选择的向量为______(填写序号).解析:根据基底的定义,∵a ,b ,c 不共面, ∴a +c ,b +c ,a +b -c 都能与a ,b 构成基底. 答案:③④⑤6.若a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3,d =e 1+2e 2+3e 3,d =αa +β b +γc ,求α、β、γ的值.解:由题意a 、b 、c 为三个不共面的向量,所以由空间向量定理可知必然存在惟一的有序实数对{α,β,γ},使d =αa +β b +γc ,∴d =α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3) =(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3. 又∵d =e 1+2e 2+3e 3, ∴⎩⎪⎨⎪⎧α+β+γ=1,α+β-γ=2,α-β+γ=3,解得⎩⎨⎧α=52,β=-1,γ=-12.7.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,M ,N 分别是AC和A 1D 的一个三等分点,且AM MC =12,A 1NND =2,设AB =a ,AD =b ,1AA =c ,试用a ,b ,c 表示MN .解:如图所示,连接AN ,则MN =MA +AN 由ABCD 是平行四边形, 可知AC =AB +AD =a +b ,MA =-13AC =-13(a +b ). ND =131A D =13(b -c ),AN =AD +DN =AD -ND =b -13(b -c )=13(c +2b ),所以MN =MA +AN =-13(a +b )+13(c +2b )=13(-a +b +c ). 8.如图所示,平行六面体OABC -O ′A ′B ′C ′,且OA =a ,OC =b ,OO '=c ,用a ,b ,c 表示如下向量:(1) OB '、O B '、AC ';(2)GH (G 、H 分别是B ′C 和O ′B ′的中点).解:(1)OB ′=OB +BB '=OA +OC +OO '=a +b +c ,O B '=O O '+OB =O O '+OA +OC =-c +a +b =a +b -c ,AC '=AC +CC ′=AB +AO +AA '=OC +AA '-OA =b +c -a .(2)GH =GO +OH =-OG +OH=-12(OB ′+OC )+12(OB '+OO ') =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).。