AHP层次分析法 实例
- 格式:doc
- 大小:127.50 KB
- 文档页数:3
层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1.建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:? 目标层(最高层):指问题的预定目标;? 准则层(中间层):指影响目标实现的准则;? 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递page1阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
层次分析法的应用实例层次分析法(Analytic Hierarchy Process,简称AHP)是一种运用于多准则决策问题的定性和定量分析方法。
通过将决策问题分解为多个层次,从而使决策问题的结构更加清晰,更容易理解和处理。
下面将介绍几个AHP方法的应用实例。
1.项目选择在项目选择过程中,可能存在多个关键因素需要权衡。
通过应用AHP,可以将项目选择问题分解为几个层次,例如项目目标、资源投入、风险等等。
然后为每个层次的因素确定权重,从而帮助决策者更加客观地评估不同项目的优劣,并做出最佳选择。
2.供应商评估当公司需要选择供应商时,往往需要考虑多个方面的因素,例如价格、质量、交货时间等等。
通过使用AHP,可以将供应商评估问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,最终确定出最佳供应商。
3.市场调研在市场调研过程中,可能涉及到多个调研指标和因素。
通过应用AHP,可以将市场调研问题分解为几个层次,例如调研目标、调研方法、数据可靠性等等。
然后为每个层次的因素确定权重,从而辅助决策者选择最适合的市场调研方法和指标。
4.产品设计在产品设计过程中,需要考虑多个因素,例如功能、性能、成本等等。
通过使用AHP,可以将产品设计问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,从而帮助设计团队确定出最佳的产品设计方案。
5.企业战略规划在企业战略规划中,需要综合考虑多个战略选项的优劣。
通过应用AHP,可以将战略规划问题分解为不同的层次和因素,例如市场前景、竞争环境、技术能力等等。
然后为每个层次的因素确定权重,从而辅助决策者选择最佳的战略规划方案。
综上所述,层次分析法在多准则决策问题的应用非常广泛。
通过将决策问题分解为多个层次,然后根据不同层次的因素确定权重,能够帮助决策者更加客观地评估不同方案的优劣,并做出最佳选择。
这种方法在项目选择、供应商评估、市场调研、产品设计和企业战略规划等领域都有重要的应用。
层次分析法实例案例分析:众所周知,重庆作为着名的“四大火炉”之一,夏天酷暑难耐,无疑空调成为人们必不可少的“降温神器”,重庆的夏天不能没有空调。
然而,空调的品牌越来越多,功能也各不相同,人们不禁会遇到一个难题—如何选择一款合适的空调?当然,空调的选择要考虑各方面的因素,比如说空调的价格、性能、品牌等。
下面就用层次分析法(AHP)对我国的三大空调品牌的选择进行分析为消费者提供一种购买决策。
选购的准则有空调的品牌信誉,产品技术,性能指标,空调的经销商和价格。
三大空调品牌为格力,海尔,美的。
(1)建立层次结构模型目标层A准则层B方案层C (2构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。
填写判断矩阵的方法:大多采取的方法是:向填写人(专家)反复询问,针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值(重要性标度值见下表)。
设填写后的判断矩阵为n n ij a A ⨯=)(,则判断矩阵满足如下性质: (1)0>ij a ,(2)ijji a a 1=(n j i ,,2,1, =)(3)ii a =1 根据上面的性质,判断矩阵具有对称性,因此在填写时,通常先填写ii a =1的部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
在特殊情况下,判断矩阵具有传递性,则满足等式:ik jk ij a a a =当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
构造判断矩阵并赋值,填写后的判断矩阵如下: 目标层A 的判断矩阵如下:准则层B 的各类准则判断矩阵如下:3、层次单排序(计算权向量)与检验对于赋值后的判断矩阵,利用一定数学方法进行层次排序。
层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
层次分析法(AHP)简介Analytical Hierarchy Process层次分析法(AHP)简介⏹美国运筹学家Thomas Saaty⏹70年代末提出⏹定性与定量相结合⏹多目标(Multi-attribute)决策方法AHP Analytical Hierarchy ProcessAHP=Analytical Hierarchy ProcessLean-Six SigmaAHP在我国80年代以后的应用概况•AHP的出现与应用为了测定对象系统的属性,并将这些属性变为客观的定量的计为了测定对象系统的属性并将这些属性变为客观的定量的计值或者主观效用的行为,即对目标系统进行评价,故先后出现了很多不同的评价分析方法,包括专家评价法、经济分析法以及运筹学和其他数学方法。
AHP法属于应用数学方法的一类在实践中筹学和其他数学方法法属于应用数学方法的类在实践中得到广泛应用。
•AHP在我国的研究与应用年代以来,我国的很多领域都先后使用了AHP进行评价与决80年代以来我国的很多领域都先后使用了策。
Lean-Six Sigma一、自然界油资1989石油资源1989环境污染治理方案二、科学技术1988军械系统软科学成果评定1989产业科技水平1989地区科技综合实力1989专科项目的邻选和评价1989科技规划决策1989中科院青年研究基金评审1989农业科技成果评定Lean-Six Sigma三、教育评估教学质1988评估教学质量1989后勤院校教学质量1989大学生综合素质1989毕业生质量1989高校基金分配四、人工制造系统1981987武器系统1987反坦克导弹武器系统方案1989柔性结构系统设计1989择优水利工程开发方案综合评价1989采矿方法可行方案综合评价Lean-Six Sigma五、人和社会系统1987领导能力考评1988专业技术人员评价1989人事管理制度制定1989开放实验室(中科院)1989科协和学会(中国科协)1989工业企业经济效益1989中小企业经济效益1989青海省南州畜牧业发展状况评价Lean-Six SigmaAHP分析基本过程⏹把复杂问题分解成各个组成元素⏹按支配关系将这些元素分组﹑分层(方案层,准则层)按支配关系将这些元素分组分层(方案层准则层)⏹通过两两比较方式判断各层次中诸元素的重要性⏹综合这些判断计算单准则排序和层次总排序⏹确定诸元素在决策中的权重Lean-Six SigmaAHP法(层次分析法)最优化设施布局目标层方案一1.空间利用率方案二方案层•确定各准则的权重2.物流强度3.搬运距离准则层4.扩充弹性1 1/5 1/7 1/3比较矩阵权重0.0571.空间利用率(1)物流强度() 5 1 1/337 3 1 53 1/3 1/510.2630.55801222.物流强度(5)3.搬运距离(7)4Lean-Six Sigma0.1224.扩充弹性(3)•一致性检验算得CI= 0.04查表得RI=0.90 CR=0.04/0.90=0.044 < 0.1通过一致性检验•水平分值方案比较矩阵0857012501670250 1 61/6 11 1/77 11 1/55 11 1/33 1比较矩阵扩充弹性搬运距离物流强度空间利用率准则方案一水平分值0.8570.1430.1250.8750.1670.8330.2500.750水平分值方案方案二•综合分值0057综合分值扩充弹性搬运距离物流强度空间利用率准则01430875083307500.3610.8570.1250.1670.250方案一0.1220.5580.2630.057权重Lean-Six Sigma0.6390.1430.8750.8330.750方案二方案二最优解读案例目标寻求最佳的方案⏹目标:寻求最佳的方案⏹对象:方案一,方案二⏹主要考虑四个方面的问题✓空间利用率✓物流强度✓搬运距离✓扩充弹性Lean-Six Sigma解读案例布局优选方案目标层空间利物流搬运扩充准则层用率强度距离弹性方案一方案方案二方案层Lean-Six Sigma准则层元素重要性分析空间利物流搬运扩充用率强度距离弹性间利用率空间利用率物流强度搬运距离扩充弹性Lean-Six SigmaLean-Six Sigma判断矩阵构成空间利用率的重要性是物流强度的1/5空间利用率物流强度搬运距离扩充弹性空间利用率 1 1/5 1/7 1/3物流强度 5 1 1/3 37315搬运距离A 7 3 1 53 1/3 1/5 1扩充弹性Lean-Six SigmamLean-Six Sigmaj =1Lean-Six Sigmamw i =Lean-Six Sigma对于本例1 1/5 1/7 1/35 1 1/3 30.2630.057 1.0990.230TAW7 3 1 53 1/3 1/5 10.1220.558=0.4922.355Temp =¼(0.230/0.057+1.099/0.263+2.355/0.558+0.492/0.122)=4.1168=4.1168-4/(4-1)=0.0389CI 4.11684/(41)0.0389查表得RI=0.90 CR=0.04/0.90=0.044 < 0.1通过一致性检验Lean-Six Sigma通过致性检验方案层对于准则的重要性类似的得出•类似的得出2个方案对不同基准的比较矩阵1611/711/51 1/3空间利用率物流强度搬运距离扩充弹性重要方案一 1 61/6 11 1/77 11 1/55 13 1性矩阵方案二0.85701430.12508750.16708330.2500750权方案一0.1430.8750.8330.750重方案二Lean-Six Sigma结果计算•最后一步计算每个方案的优劣最后步计算每个方案的优劣方案一得分=0.057*0.25+0.263*0.167+0.558*0.125+0.122*0.857=0.361方案二得分=0.057*0.75+0.263*0.833+0.558*0.875+0.122*0.143=0.639Lean-Six Sigma案例:物流系统供货商选择的评价与决策⏹研究背景及目的⏹建模及分析过程⏹结论研究背景及目的•货物采购是物流系统一项独立并且重要的功能,供货商的工作情况对物流企业生产率、产品质量及竞争力有很大影工作情况对物流企业生产率产品质量及竞争力有很大影响,因此选择合适的供货商尤为重要。
AHP层次分析法--实例什么是AHP?AHP全称为Analytic Hierarchy Process,中文翻译为“层次分析法”,是由美国数学家托马斯·L·赛蒂在20世纪70年代初提出的一种用于复杂多目标决策的评估方法。
AHP方法的核心是利用层次结构模型,将复杂问题分解成若干个较小的组成部分,通过重点考虑各个部分在整体决策中的相对重要程度,最终得到全局最优的决策方案。
以购买一部新手机为例,假设我们需要选择一款符合自己需求的手机。
我们可以先将这个问题划分为几个要素,比如品牌、操作系统、屏幕大小、摄像头、价格等,针对这些要素,又可以进一步划分出更加详细的几个层次,如手机品牌可以再分为苹果、三星、华为、OPPO等。
下面我们来分别分析各个层次的重要程度。
1. 品牌对于品牌这个层次,我们可以考虑以下四个品牌:苹果、三星、华为和OPPO。
我们可以根据自己对这些品牌的认知程度以及市场占有率等因素来对它们进行排名,比如我认为苹果品牌最好,三星次之,华为再次之,而OPPO则是最不理想的选择,可以把它们排列成如下图表:| | 苹果 | 三星 | 华为 | OPPO || --- | ---- | ---- | ---- | ---- || 苹果 | 1 | 0.2 | 0.3 | 0.1 || 三星 | 5 | 1 | 0.5 | 0.3 || 华为 | 3.3 | 2 | 1 | 0.5 || OPPO | 10 | 3.3 | 2 | 1 |在这张表格中,左上至右下的主对角线上的数值都为1,因为一个品牌与自己之间的比较是没有意义的,其他位置上的数值则表示一个品牌相对于另一个品牌具有的重要程度比例,比如苹果对三星的重要程度是0.2,表示我们认为选择苹果手机是三星手机的五倍重要。
2. 操作系统对于操作系统这个层次,我们假设只考虑两个选择:iOS和Android,为了判断哪个更重要,我们可以考虑以下几个因素:易用性、系统稳定性、应用生态系统、开发者支持等。
ahp层次分析法案例AHP层次分析法案例。
AHP(Analytic Hierarchy Process)层次分析法是一种多准则决策方法,被广泛应用于各种领域,包括工程、管理、经济学等。
它通过将复杂的决策问题分解为多个层次,然后对不同层次的因素进行比较和权重分配,最终得出最优决策方案。
下面我们将通过一个实际的案例来介绍AHP层次分析法的应用。
假设我们是一家电子产品公司的市场部经理,现在需要决定公司下一季度要推出的新产品。
我们面临的选择包括智能手表、智能耳机和智能手环三种产品。
在进行决策之前,我们需要考虑多个因素,例如市场需求、技术成熟度、生产成本、营销推广等。
接下来,我们将运用AHP层次分析法来进行决策。
首先,我们将问题分解为两个层次,产品选择和产品因素。
在产品选择层次中,我们需要比较智能手表、智能耳机和智能手环这三种产品的优劣;在产品因素层次中,我们需要考虑市场需求、技术成熟度、生产成本和营销推广这四个因素。
接下来,我们需要构建一个层次结构,将产品选择和产品因素两个层次连接起来。
然后,我们需要对每个因素进行两两比较,得出它们之间的重要程度。
比较的结果可以用一组两两比较矩阵来表示,然后通过特征向量法或最大特征值法来计算每个因素的权重。
假设经过比较和计算,我们得出的权重分配如下,市场需求(0.3)、技术成熟度(0.2)、生产成本(0.25)、营销推广(0.25)。
接下来,我们将这些权重和产品选择层次中的产品进行比较,得出最终的决策结果。
假设经过比较,我们得出智能手表(0.35)、智能耳机(0.3)、智能手环(0.35)的权重分配。
根据这些权重分配,我们可以得出最终的决策结果,公司下一季度将推出智能手表和智能手环两种产品。
通过以上案例,我们可以看到AHP层次分析法的应用过程。
它能够帮助我们将复杂的决策问题分解为多个层次,从而更好地进行比较和权重分配,得出科学合理的决策结果。
在实际应用中,AHP层次分析法可以帮助我们更好地应对各种决策问题,提高决策的科学性和准确性。
ahp层次分析法案例AHP层次分析法是一种决策分析方法,适用于解决复杂的决策问题。
以下是一个AHP层次分析法的案例,用于决策一个公司在新市场中选择合适的产品。
某公司考虑进入新市场,希望选择一个适合的产品。
为了做出最佳决策,他们使用AHP层次分析法,按照以下步骤进行分析:1. 首先,确定决策层次结构。
公司将决策分为三个层次:目标层、准则层和备选方案层。
目标层是公司的终极目标,准则层是实现目标所需的因素,备选方案层是可以选择的不同产品。
2. 其次,制定判断矩阵。
为了做出决策,公司需要以对比方式,对准则和备选方案进行比较。
他们使用一个判断矩阵,将每个准则和备选方案两两对比,来确定它们的重要性或优劣。
假设公司选择了三个准则:市场需求、竞争力和技术实施。
他们对每个准则进行两两对比,并使用1-9的标度,表示相对重要性。
例如,市场需求对竞争力的重要性可能被评价为5,而竞争力对技术实施的重要性可能被评价为3。
3. 确定权重向量。
根据判断矩阵,公司计算每个准则的权重。
通过对矩阵的每一列进行平均化,可以计算出每个准则的权重向量。
例如,如果市场需求对竞争力的重要性为5,竞争力对技术实施的重要性为3,则市场需求的权重为5/(5+3)=0.625,竞争力的权重为3/(5+3)=0.375。
4. 计算一致性检查。
公司通过计算一致性指标(CI)和一致性比率(CR)来确定判断矩阵的一致性。
如果CI小于0.10,且CR小于0.10,则认为判断矩阵是一致的。
5. 最后,比较备选方案。
根据判断矩阵和准则的权重,公司可以计算每个备选方案的总权重。
备选方案的总权重越高,表示其相对于其他备选方案的优势越大。
根据AHP层次分析法,公司能够比较不同产品在新市场中的优势,并根据准则的权重,做出最佳选择。
通过AHP层次分析法的应用,公司能够对于复杂的决策问题进行系统化、结构化的分析,以更有根据地做出决策,提高决策的准确性和可靠性。
同时,该方法还能帮助公司更好地理解和分析决策过程中的关键因素和限制条件,以及它们之间的相互关系,从而更好地促进决策的质量和效益。
python实现AHP算法的⽅法实例(层次分析法)⼀、层次分析法原理层次分析法(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞蒂(T. L. Saaty)于20世纪70年代中期提出,⽤于确定评价模型中各评价因⼦/准则的权重,进⼀步选择最优⽅案。
该⽅法仍具有较强的主观性,判断/⽐较矩阵的构造在⼀定程度上是拍脑门决定的,⼀致性检验只是检验拍脑门有没有⾃相⽭盾得太离谱。
相关的理论参考可见:⼆、代码实现需要借助Python的numpy矩阵运算包,代码最后⽤了⼀个b1矩阵进⾏了调试,相关代码如下,具体的实现流程已经⽤详细的注释标明,各位⼩伙伴有疑问的欢迎留⾔和我⼀起讨论。
import numpy as npclass AHP:"""相关信息的传⼊和准备"""def __init__(self, array):## 记录矩阵相关信息self.array = array## 记录矩阵⼤⼩self.n = array.shape[0]# 初始化RI值,⽤于⼀致性检验self.RI_list = [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58,1.59]# 矩阵的特征值和特征向量self.eig_val, self.eig_vector = np.linalg.eig(self.array)# 矩阵的最⼤特征值self.max_eig_val = np.max(self.eig_val)# 矩阵最⼤特征值对应的特征向量self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real# 矩阵的⼀致性指标CIself.CI_val = (self.max_eig_val - self.n) / (self.n - 1)# 矩阵的⼀致性⽐例CRself.CR_val = self.CI_val / (self.RI_list[self.n - 1])"""⼀致性判断"""def test_consist(self):# 打印矩阵的⼀致性指标CI和⼀致性⽐例CRprint("判断矩阵的CI值为:" + str(self.CI_val))print("判断矩阵的CR值为:" + str(self.CR_val))# 进⾏⼀致性检验判断if self.n == 2: # 当只有两个⼦因素的情况print("仅包含两个⼦因素,不存在⼀致性问题")else:if self.CR_val < 0.1: # CR值⼩于0.1,可以通过⼀致性检验print("判断矩阵的CR值为" + str(self.CR_val) + ",通过⼀致性检验")return Trueelse: # CR值⼤于0.1, ⼀致性检验不通过print("判断矩阵的CR值为" + str(self.CR_val) + "未通过⼀致性检验")return False"""算术平均法求权重"""def cal_weight_by_arithmetic_method(self):# 求矩阵的每列的和col_sum = np.sum(self.array, axis=0)# 将判断矩阵按照列归⼀化array_normed = self.array / col_sum# 计算权重向量array_weight = np.sum(array_normed, axis=1) / self.n# 打印权重向量print("算术平均法计算得到的权重向量为:\n", array_weight)# 返回权重向量的值return array_weight"""⼏何平均法求权重"""def cal_weight__by_geometric_method(self):# 求矩阵的每列的积col_product = np.product(self.array, axis=0)# 将得到的积向量的每个分量进⾏开n次⽅array_power = np.power(col_product, 1 / self.n)# 将列向量归⼀化array_weight = array_power / np.sum(array_power)# 打印权重向量print("⼏何平均法计算得到的权重向量为:\n", array_weight)# 返回权重向量的值return array_weight"""特征值法求权重"""def cal_weight__by_eigenvalue_method(self):# 将矩阵最⼤特征值对应的特征向量进⾏归⼀化处理就得到了权重array_weight = self.max_eig_vector / np.sum(self.max_eig_vector)# 打印权重向量print("特征值法计算得到的权重向量为:\n", array_weight)# 返回权重向量的值return array_weightif __name__ == "__main__":# 给出判断矩阵b = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]])# 算术平均法求权重weight1 = AHP(b).cal_weight_by_arithmetic_method()# ⼏何平均法求权重weight2 = AHP(b).cal_weight__by_geometric_method()# 特征值法求权重weight3 = AHP(b).cal_weight__by_eigenvalue_method()总结到此这篇关于python实现AHP算法(层次分析法)的⽂章就介绍到这了,更多相关python AHP算法(层次分析法)内容请搜索以前的⽂章或继续浏览下⾯的相关⽂章希望⼤家以后多多⽀持!。
ahp方法案例AHP 方法,也就是层次分析法呀,这可是个超有用的工具呢!咱就说,你要是想做个重大决定,比如选个工作啦,或者买个房子啥的,AHP 方法就能派上大用场啦。
比如说你要买房吧,那得考虑好多因素呢。
房子的位置重要不?那肯定重要啊!交通方不方便呀,周边配套齐不齐全呀。
房子的大小呢,是不是得够一家人住呀。
还有房子的质量,可不能三天两头出问题吧。
价格呢,也是个关键因素呀,咱得在自己的预算范围内不是。
这时候AHP 方法就闪亮登场啦!咱先把这些因素一层一层地分好,位置是一层,大小质量是一层,价格又是一层。
然后给每个因素打分,重要的就给高分,不那么重要的就给低分。
然后通过一些计算,就能看出哪个房子综合起来最适合你啦。
再举个例子,要是公司要选个新的项目来做。
那得考虑项目的收益吧,风险大不大呀,实施难度高不高呀,市场前景怎么样呀。
把这些都列出来,一层一层地分析,最后就能找到那个最有潜力的项目啦。
你看,AHP 方法就像一个超级厉害的军师,能帮你理清思路,做出明智的选择。
它就像是在一堆乱麻中找到那根关键的线头,轻轻一拉,所有问题都迎刃而解啦。
想象一下,如果没有 AHP 方法,那我们做决定得多盲目呀。
可能就是凭感觉,或者听别人随便说说就做了决定,那到时候后悔都来不及呀。
有了AHP 方法,我们就可以很有条理地分析每个因素的重要性,权衡利弊,做出最适合自己的选择。
它不是那种死板的方法哦,你可以根据自己的实际情况来调整,非常灵活呢。
而且呀,学会了 AHP 方法,不仅能在大事上帮你,在生活中的小事上也能派上用场呢。
比如说今天晚上吃啥,哈哈,也可以用AHP 方法来分析分析呀,是吃火锅呢,还是吃炒菜呢,或者吃个西餐啥的。
总之呢,AHP 方法真的是个超级实用的工具呀,大家一定要好好利用起来哟!别再盲目地做决定啦,让 AHP 方法来帮你找到最正确的路吧!。
刘永祥 20060549 06级工商5班
一、用AHP 分析法解答“公司从联想、华硕、同方三个品牌中选择一家,订购价位在5000元的台式机”的问题。
用到的五个相关属性是:CPU 、内存、硬盘、电源、主板,分别用P1、P2、P3、P4、P5来表示。
解:
1
2、求出目标层的权重估计
用“和积法”计算其最大特征向量 判断矩阵B : CPU 内存 硬盘
电源 主板 B P1 P2 P3 P4 P5 P1 1 3 3 5 1 P2 1/3 1 1 3 1/2 P3 1/3 1 1 3 1/2 P4 1/3 1 1/3 1 1/3 P5
1
2
2
3
1
3 8 7.3 15 3.3
B P1 P2 P3 P4 P5 ∑ P1 0.33 0.38 0.41 0.33 0.30 1.76 P2 0.11 0.13 0.14 0.20 0.15 0.72 P3 0.11 0.13 0.14 0.20 0.15 0.72 P4 0.11 0.13 0.05 0.07 0.10 0.45 P5 0.33 0.25 0.27 0.20 0.30 1.36 ∑
5.01
对向量W=(W 1、W 2、W 3、W 4、W 5)t 归一化处理
1
i
i n
i
i W W W
==
∑(i=1,2,……n)
W t = (0.35,0.14,0.14,0.09,0.27)
W=(W 1、W 2、W 3、W 4、W 5)T =(0.35,0.14,0.14,0.09,0.27) T
(BW)=
1 3 3 5 1 1/3 1 1 3 1/
2 1/
3 1 1 3 1/2 1/3 1 1/3 1 1/3 1
2
2
3
1
计算判断矩阵最大特征跟λmax
max 1
()n
i
i
i BW nW λ==∑
=1.19/5*0.35+0.8/5*0.14+0.8/5*0.14+0.48/5*0.09+1.45/5*0.27=5.11 C.I. = ( λmax -N) / (N-1) = (5.11-5) / (5-1) =0.03 C.R. =0.03/1.12=0.02
0.35 0.14
0.14 0.09
0.27
* =
1.19 0.80 0.80 0.48 1.45
3、求出方案层对目标层的最大特征向量(同2),求得:
(W11W21W31) = (0.54,0.16,0.30)
(W12W22W23) = (0.30,0.10,0.60)
(W13W23W33) = (0.63,0.26,0.11)
(W14W24W34) = (0.22,0.67,0.11)
(W15W25W35) = (0.30,0.60,0.10)
4、求得三家公司的总得分:
甲的得分=W i*W i1 =0.35*0.54+0.14*0.3+0.14*0.63+0.09*0.22+0.27*0.3=0.42 乙的得分=W i*W i2 =0.35*0.16+0.14*0.1+0.14*0.26+0.09*0.67+0.27*0.6=0.33 丙的得分=W i*W i3 =0.35*0.30+0.14*0.6+0.14*0.11+0.09*0.11+0.27*0.1=0.24 所以应该选择甲(联想)公司进行电脑订购。