煤炭气化与液化技术
- 格式:ppt
- 大小:4.06 MB
- 文档页数:31
煤炭洁净加工技术的分类
煤炭洁净加工技术可以分为以下几类:
1. 煤炭粉煤化技术:将煤炭磨碎成细小的煤粉,提高燃烧效率,减少烟气排放。
常见的煤炭粉煤化技术包括煤粉炉渣分离、煤粉气固分离等。
2. 煤炭燃烧优化技术:通过优化煤炭的燃烧过程,减少燃烧废气中的污染物排放。
常见的燃烧优化技术包括燃烧氧化剂预热、燃烧控制系统优化等。
3. 煤炭气化技术:将煤炭在高温和缺氧条件下转化为合成气体(包括CO和H2等成分),再经过清洁处理得到清洁燃料或
化工原料。
常见的煤炭气化技术包括煤气化、生物质气化等。
4. 煤炭液化技术:将煤炭经过加热和一定的催化剂处理后,转化为液体燃料,如煤油、柴油等。
常见的煤炭液化技术包括煤直接液化、煤间接液化等。
5. 煤炭燃气化技术:将煤炭通过煤燃气化装置,转化为燃气,再通过一系列净化处理得到清洁燃气。
常见的煤炭燃气化技术包括煤焦气气化、煤气补给炉燃气化等。
6. 煤炭金属提取技术:将煤炭中的有价值的金属元素进行提取,减少对环境的污染。
常见的煤炭金属提取技术包括煤炭中金属提取、煤矸石中金属提取等。
以上仅为煤炭洁净加工技术的一些常见分类,具体的分类方式还会根据技术的不断发展和创新而有所变化。
煤炭直接液化技术总结洁净煤技术——直接液化技术一、德国IGOR工艺1981年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200吨的半工业试验装置,操作压力由原来的70兆帕降至30兆帕,反应温度450~480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。
原理图:IGOR直接液化法工艺流程工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。
中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。
为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。
液化油经两步催化加氢,已完成提质加工过程。
油中的氮和硫含量可降低到10-5数量级。
此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。
柴油只需加少量添加剂即可得到合格产品。
与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36~0. 50 t /( m3·h)。
在反应器相同的条件下,IGOR工艺的生产能力可比其他煤液化工艺高出50%~100%。
由于煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。
工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。
投资可节约20%左右,并提高了能量效率。
间接液化概念间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及**因素而盛衰不定。
费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有多套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费托装置,设计目标是生产燃料。
煤炭清洁利用技术发展方向及作用范文煤炭作为我国主要的能源资源,一直以来都在我国经济发展中扮演着重要角色。
然而,煤炭的使用也带来了严重的环境问题,如大气污染和温室气体排放。
因此,煤炭清洁利用技术的发展变得至关重要。
本文将探讨煤炭清洁利用技术的发展方向及其在环境保护中的作用。
一、发展方向1. 煤炭气化技术的发展煤炭气化技术是将热力学和动力学原理应用于将煤转化为气体燃料的一种技术。
气化产生的气体可以直接用于发电、供暖和工业生产等领域。
随着技术的不断发展,煤炭气化技术可以实现高效清洁的煤气化,减少有害物质的排放,降低对环境的影响。
2. 煤炭液化技术的发展煤炭液化技术是将煤炭转化为液体燃料的一种技术。
通过液化技术可以将煤炭转化为石油替代品,减少对有限石油资源的依赖。
同时,液化技术还可以减少燃烧过程中产生的污染物排放,提高能源利用效率。
3. 煤炭燃烧技术的改进煤炭燃烧是目前最主要的煤炭利用方式,其排放产生的大气污染物是当前环境问题的主要来源。
为了减少煤炭燃烧过程中的排放物,煤炭燃烧技术需要不断进行改进。
例如,采用先进的燃烧技术可以实现高效清洁的煤炭燃烧,减少污染物的排放。
4. 煤炭废弃物的综合利用煤炭开采和利用过程中产生了大量的废弃物,如煤矸石、煤炭飞灰等。
这些废弃物对环境造成的污染和破坏是不容忽视的。
因此,煤炭废弃物的综合利用也是煤炭清洁利用技术的一个重要方向。
通过技术手段对废弃物进行回收、再利用,可以减少污染物的排放,实现资源的循环利用。
二、作用范围1. 减少大气污染当前,大气污染已成为我国面临的严重环境问题之一。
煤炭燃烧排放的污染物直接影响着空气质量。
通过开发和应用清洁煤炭利用技术,可以有效地减少煤炭燃烧过程中产生的大气污染物排放,改善空气质量。
2. 降低温室气体排放煤炭的利用过程中产生的二氧化碳等温室气体是导致气候变化的主要原因之一。
通过发展煤炭清洁利用技术,可以降低煤炭利用过程中的温室气体排放,减缓气候变化的进程。
煤炭清洁高效利用的技术煤炭作为我国主要能源资源之一,在能源结构中占据着重要地位。
然而,传统的煤炭开采和利用方式往往伴随着环境污染和资源浪费问题。
为了实现煤炭资源的清洁高效利用,科研人员们不断探索和创新,提出了一系列煤炭清洁高效利用的技术。
本文将介绍几种主要的技术方法,以期为煤炭资源的可持续利用提供参考。
一、煤炭洁净燃烧技术煤炭燃烧是目前我国主要的能源利用方式之一,但传统的煤炭燃烧方式会释放大量的二氧化硫、氮氧化物和颗粒物等污染物,对环境造成严重影响。
为了减少煤炭燃烧过程中的污染物排放,科研人员提出了煤炭洁净燃烧技术。
这些技术包括燃烧优化技术、燃烧控制技术、烟气脱硫脱硝技术等。
通过对燃烧过程进行优化控制,可以有效降低污染物排放,提高燃烧效率,实现煤炭的清洁利用。
二、煤炭气化技术煤炭气化是将煤炭转化为合成气或甲醇等清洁燃料的过程。
相比传统燃煤方式,煤炭气化具有高效利用煤炭资源、减少污染物排放的优势。
目前,我国已经建立了一系列煤炭气化项目,采用先进的气化技术,实现了煤炭资源的清洁高效利用。
煤炭气化技术的发展不仅可以提高煤炭资源的利用率,还可以促进清洁能源的发展,推动能源结构的优化调整。
三、煤炭超临界发电技术煤炭超临界发电技术是指利用超临界锅炉进行发电,具有高效、清洁、节能的特点。
相比传统的火电厂,超临界发电技术可以显著降低燃煤消耗量和污染物排放,提高发电效率,减少环境影响。
我国在超临界发电技术方面取得了一系列重要进展,建设了大量超临界发电项目,为煤炭资源的清洁高效利用提供了重要支撑。
四、煤炭清洁利用的研究方向除了以上介绍的几种主要技术外,煤炭清洁高效利用的研究还包括煤炭液化、煤炭生物转化、煤炭燃料电池等多个方向。
煤炭液化技术可以将煤炭转化为液体燃料,实现煤炭资源的高效利用;煤炭生物转化技术利用微生物降解煤炭,生产生物燃料或化学品;煤炭燃料电池技术将煤炭氧化还原反应转化为电能,实现清洁能源的生产。
这些新兴技术的发展将为煤炭资源的清洁高效利用开辟新的途径,推动煤炭产业向绿色、可持续发展方向转型。
煤炭清洁利用技术的进展与展望近年来,随着环境保护意识的增强和能源结构调整的推进,煤炭清洁利用技术逐渐成为关注的焦点。
煤炭作为我国主要能源来源之一,其清洁利用对于减少环境污染、提高能源利用效率具有重要意义。
本文将从煤炭清洁利用技术的进展和展望两个方面进行探讨。
一、煤炭清洁利用技术的进展1. 燃煤电厂脱硫技术的进步燃煤电厂是我国主要的煤炭利用方式之一,但其排放的二氧化硫对大气环境造成了严重污染。
为了减少二氧化硫的排放,燃煤电厂采用了脱硫技术。
随着技术的不断改进,燃煤电厂脱硫效率得到了显著提高,大部分电厂已经实现了脱硫设施的全面覆盖。
2. 煤炭气化技术的突破煤炭气化是一种将煤炭转化为合成气的技术,合成气可以用于发电、制造化学品等领域。
过去,煤炭气化技术存在着高能耗、高排放等问题,限制了其应用。
然而,随着技术的进步,煤炭气化技术逐渐突破了这些难题,实现了更高效率、更清洁的煤炭利用。
3. 煤炭液化技术的发展煤炭液化是将煤炭转化为液体燃料的过程,液化煤可以替代石油作为交通燃料,减少对石油的依赖。
过去,煤炭液化技术存在着高成本、低效率等问题,限制了其应用。
然而,近年来,煤炭液化技术得到了较大的发展,已经实现了规模化生产,并逐渐成为我国清洁能源的重要组成部分。
二、煤炭清洁利用技术的展望1. 煤炭气化技术的进一步推广煤炭气化技术具有广泛的应用前景,可以将煤炭转化为合成气,用于发电、制造化学品等领域。
未来,随着技术的不断进步,煤炭气化技术将进一步推广应用,实现更高效、更清洁的煤炭利用。
2. 煤炭液化技术的成本降低煤炭液化技术虽然已经实现了规模化生产,但其成本仍然较高,限制了其大规模应用。
未来,需要进一步研究和改进煤炭液化技术,降低其成本,提高效率,以实现更广泛的清洁能源利用。
3. 煤炭清洁利用技术的综合应用目前,煤炭清洁利用技术主要集中在燃煤电厂、煤炭气化和煤炭液化等领域。
未来,可以进一步将各种清洁利用技术进行综合应用,实现煤炭资源的最大化利用和能源的高效利用。
煤炭行业的煤制油气与清洁能源技术煤炭作为我国主要的能源资源,长期以来在能源结构中占据重要地位。
然而,传统的煤炭燃烧方式造成了严重的环境污染和资源浪费。
近年来,随着清洁能源的需求不断增长,煤炭行业的煤制油气技术应运而生,为我国清洁能源的发展提供了新的方向。
煤制油气技术概述煤制油气技术是指通过化学加工手段,将煤炭转化为石油和天然气等可燃气体的技术。
这一技术主要包括煤气化和煤液化两个过程。
煤气化煤气化是将固体煤炭通过高温加热,在氧气不足的条件下转化为气体燃料的过程。
煤气化的主要产物为合成气(Syngas),其主要成分为一氧化碳(CO)和氢气(H2),可用于合成液体燃料、电力生产等多种用途。
煤液化煤液化是将煤炭转化为液体燃料的技术。
煤液化过程中,煤炭首先经过化学加工转化为合成油(Synthetic Oil),然后再进一步加工成为各种液体燃料。
清洁能源技术清洁能源技术是指在利用能源的过程中,对环境污染小,可持续发展的技术。
在煤炭行业,清洁能源技术主要包括煤炭清洁利用技术和新能源技术。
煤炭清洁利用技术煤炭清洁利用技术主要包括煤炭洗选、燃烧优化、污染物控制等技术。
通过煤炭洗选,可以有效去除煤炭中的杂质,提高煤炭质量。
燃烧优化技术可以提高煤炭燃烧的效率,减少污染物排放。
污染物控制技术则可以通过各种手段,如烟气脱硫、脱硝等,减少煤炭燃烧过程中产生的污染物。
新能源技术新能源技术是指在利用能源的过程中,对环境污染小,可持续发展的技术。
在煤炭行业,新能源技术主要包括太阳能、风能、核能等。
煤制油气技术在提供清洁能源的同时,也需要考虑到环境污染和资源利用的问题。
清洁能源技术在提供能源的同时,也需要考虑到能源的可持续发展和环境污染的问题。
因此,煤炭行业在发展煤制油气和清洁能源技术的过程中,需要综合考虑各种因素,以实现可持续发展。
以上内容为左右。
后续内容将详细分析煤制油气技术的现状、发展趋势以及清洁能源技术的应用案例等。
煤制油气技术现状与发展趋势煤气化技术的现状与发展煤气化技术在我国已经取得了显著的成果。