煤气化技术及其工业应用
- 格式:doc
- 大小:56.45 KB
- 文档页数:6
煤气化技术及其应用在化工工业中的前景煤气化技术是将固体煤转化为可燃气体的过程,通过控制气化反应条件,可以获得不同组分和性质的合成气,如合成气、水煤气等。
煤气化技术在化工工业中具有广阔的应用前景,可以提供丰富的原料和能源,同时减少对传统石油资源的依赖。
首先,煤气化技术可以为化工工业提供多种原料。
通过煤气化,煤中的有机物质可以转化为合成气,合成气中含有一定比例的一氧化碳和氢气,这些气体可以用于合成化学品。
例如,一氧化碳可以通过催化反应转化为甲醇、乙醇等有机化合物,而氢气则可以用于制备氨、氢氟酸等化学产品。
煤气化技术可以将煤转化为合成气,为化工工业提供了丰富的原料资源,满足了不同化学品的生产需求。
其次,煤气化技术还可以提供清洁能源。
煤气化过程中,煤中的硫、氮等杂质会被去除,从而减少了燃烧产生的污染物排放。
而合成气中的一氧化碳和氢气可以作为燃料使用,可以替代传统的石油和天然气。
煤气化技术可以将煤转化为清洁能源,减少对传统能源的依赖,降低环境污染,符合可持续发展的要求。
此外,煤气化技术还可以实现能源的高效利用。
煤气化过程中,产生的余热可以通过余热回收技术进行利用,提高能源利用效率。
同时,合成气中的一氧化碳和氢气可以通过催化反应转化为合成燃料,如合成柴油、合成天然气等。
这些合成燃料具有高热值、低硫、低氮的特点,可以替代传统燃料,降低能源消耗和排放。
然而,煤气化技术在应用过程中还面临一些挑战。
首先,煤气化过程中产生的合成气中含有一定比例的一氧化碳,这对操作人员的安全构成了一定的威胁。
其次,煤气化设备的建设和运行成本较高,需要投入大量的资金和技术支持。
此外,煤气化技术对煤质的要求较高,需要选择适合的煤种进行气化,这对煤矿的开采和选择提出了一定的要求。
为了克服这些挑战,需要加强煤气化技术的研发和应用。
一方面,可以通过改进气化反应条件和催化剂的选择,降低合成气中一氧化碳的含量,提高操作人员的安全性。
另一方面,可以加强煤气化设备的研发,降低建设和运行成本,提高设备的稳定性和可靠性。
简述煤的气化原理及其应用气化原理煤的气化是什么?煤的气化是将煤转化为气体燃料的过程。
这个过程涉及将煤暴露在高温和压力下,以生成可燃气体,如合成气、甲烷和一氧化碳。
煤的气化原理煤的气化基于化学反应,主要包括以下步骤: - 干馏:煤首先在低温下进行干馏,水和挥发性物质从煤中分离出来。
- 热解:在高温下,煤分子中的碳-碳键和碳-氢键断裂,生成一系列的气体和固体产物。
- 气化:煤在高温下与气体或氧气反应,生成一氧化碳和氢气。
气化反应类型煤的气化反应可以分为两种类型: 1. 干燥气化:在缺乏氧气的情况下进行,主要生成气体燃料。
2. 部分氧化气化:在氧气供应充足的条件下进行,同时生成气体燃料和燃烧产物。
煤气化的优势煤气化作为一种煤的加工技术,具有以下优势: - 煤气化产生的气体燃料可以替代传统石油和天然气,减少对有限石油资源的依赖。
- 煤气化可以生产醇、酮和醚等多种化学品,用于化工生产或作为原材料。
- 煤气化产生的一氧化碳可以用作合成气、合成醇和化肥等化学产品的原料。
- 煤气化可以减少污染物的排放,如二氧化碳和硫化物。
煤气化应用煤气化技术在不同领域有广泛的应用,包括以下几个方面:煤化工煤气化可以产生丰富的化学品,例如合成氨、合成甲醇、合成酮和合成醇等。
这些化学品被广泛应用于化肥、塑料、合成纤维、橡胶、染料等领域,推动了煤化工产业的发展。
煤燃气和城市煤气煤气化技术可以用来生产城市燃气,用于居民和工业领域的供热和燃料。
在过去,城市燃气主要来源于煤炭气化。
随着天然气的普及,煤燃气的应用逐渐减少。
电力和能源煤气化可以用于发电,特别是在没有天然气和石油资源的地区。
合成气可以用于燃烧,发电厂可以利用合成气发电。
此外,合成气还可以用于燃料电池,产生清洁的电能。
替代石油和天然气近年来,由于石油和天然气价格的不稳定和供应的限制,煤气化作为一种煤的转化技术,被认为是一种替代石油和天然气的重要手段。
通过煤气化,可以将煤转化为液体燃料,例如合成油和合成柴油。
煤制气技术的发展与应用研究煤作为我国最重要的矿产资源之一,其在能源、化工、冶金、建材等领域的应用广泛。
其能源利用的关键是实现煤的清洁高效利用,而煤制气技术正是实现这一目标的重要手段之一。
本文将从煤制气技术的发展历程、技术原理、应用现状和未来发展方向等方面进行探讨。
一、煤制气技术的发展历程煤制气技术的起源可追溯至19世纪中叶,当时在欧洲国家和美国已经开始大规模地应用。
经过近百年的发展,煤制气技术经历了多次技术革新和重要进展。
1949年新中国成立后,煤制气技术成为我国发展煤化工产业的重要支撑。
从20世纪50年代到70年代,我国采用气化炉、还原炉等多种设备生产煤气,其中,节能型气化炉曾在引进和消化吸收基础型气化炉的基础上,使煤制气技术实现了跨越式发展。
80年代以来,我国煤制气技术进入了新阶段。
随着气化技术的不断完善和改进,煤制气工艺现代化程度不断提高,新煤气化工艺如流化床气化技术、1 000 t/d以上煤气化工示范工程等相继建设并成功运行。
二、煤制气技术的原理和分类煤制气技术是指将煤炭通过气化反应转化为可燃性气体的一种技术。
其主要分为固定床气化、流化床气化和床层氧化等多种工艺,其中固定床气化流程如下:首先将煤炭破碎、粉碎,经过煤粉干式输送后进入气化炉内,经过一系列化学反应,产生一氧化碳、氢等可燃气体,并在气化过程中释放出的热量维持反应。
反应结束后,气体通过各种设备进行净化、加压、输送等处理以及后续的利用,如合成氨、合成甲醇和合成柴油等。
三、煤制气技术的应用现状目前,我国的煤制气技术有较广泛的应用。
在能源方面,煤制气技术已广泛应用于城市燃气、发电、工业锅炉等领域。
根据统计,我国煤制气产业已从2011年的3,000亿立方米增长到2019年的4,800亿立方米,其市场规模已达到数千亿元。
在化工领域,煤制气技术被广泛应用于合成氨、甲醇、合成油等领域。
同时,随着环保意识的不断提升,我国还将进一步加快煤制气技术的绿色化、高效化和智能化进程。
BGL碎煤熔渣气化技术及其工业应用分析摘要BGL碎煤熔渣气化技术是英国和德国共同研发的一种有别于传统的煤气化技术,这种技术目前具备的非常突出的优势。
尤其是在工业应用当中,BGL碎煤熔渣气化技术已经逐渐得到推广,其优势也很大提高了工业生产与运用的效率。
针对新型的煤气化技术,本文现简述了其大致的发展历程及其关键工艺,并结合其工艺和优势深入分析它在工业当中的应用。
关键词BGL;碎煤熔渣气化;工业应用引言由于BGL碎煤熔渣气化技术与过去的煤气化技术相比具有十分突出的特点,能够降低工业生产成本,也能极大提高工业生产的效率,因此我国从国外引入了这项技术[1]。
并且在不断应用当中,我国该项技术相关专业人员也予以了关注和重视。
关于BGL碎煤熔渣气化技术,本文现具体有以下分析。
1 BGL碎煤熔渣气化技术概述1.1 BGL碎煤熔渣气化技术BGL是British Gas-Lurgi的英文首字母的缩写,其表示的含义是英国燃气—鲁奇。
该技术是在原来鲁奇固定加压气化炉技术的基础上开发出来的,其开发耗费的资金数量极为庞大。
在20世纪70年代至90年代,BGL技术已经得到验证与示范,之后便逐渐在工业工厂中得以应用。
在BGL技术开发之前,工业中要达到煤气化的目的,使用的最为广泛的技术是鲁奇固定加压气化技术。
鲁奇固定加压气化技术具有非常明显的优点和缺陷,一方面该技术的氧耗低及其气化炉建设需要资金量相对较少,但另一方面该技术的气化强度低、蒸汽消耗大且利用率低和大量气化污水造成净化成本高[2]。
此外,在工业工厂中现代熔渣气化技术也得到相应的应用,而现代熔渣气化技术的优点和缺陷刚好是相反的。
因此,在BGL技术还未开发完成和推广之前,国内外工业发展中主要依赖的是以上提到的两种技术。
BGL技术实际上是弥补了以上两种技术的缺陷,将其二者的优点结合在一起,从而形成具有综合性优点的技术,实现工业的高效生产。
1.2 BGL碎煤熔渣气化技术的优势与特点分析BGL技术结合了鲁奇固定加压气化技术与现代和熔渣气化技术的优点,就其优点本文主要有以下具体的阐述:(1)BGL技术中气化强度高根据BGL气化原理,要达到较高的气化强度,该技术主要是在原来的鲁奇炉内壁中添加耐火砖衬,在鲁奇炉的底部四周添置一组喷嘴,在这样的鲁奇炉设计之下,炉内则会形成局部约为2000℃的燃烧区,气化区温度则在1400℃~1600℃范围[3]。
干煤粉气化技术是气流床气化技术的一种,具有煤种适应性宽、技术指标优、氧耗低、设备寿命长、开停车操作方便、自动化水平高等特点[1]。
国内引进后普遍存在煤种适应性不好、装置运行不稳定等诸多问题,使项目达产缺乏保障。
为此,神华宁夏煤业集团依托集团煤化工板块采用的3大煤气化技术,即德士古废锅水煤浆加压气化技术[2]、四喷嘴水煤浆加压气化技术[3]和GSP 干煤粉加压气化技术[4],联合中国五环工程公司于2012年开发出拥有自主知识产权的2000t 级~3000t 级干煤粉加压气化技术-神宁炉气化技术[5]。
神华宁夏煤业集团公司400万t/a 煤制油项目气化装置采用了此技术的气化炉,实现了装置内全部设备国产化率大于98.5%,同时也担负起后续煤化工项目煤气化装置采用自主技术示范性工程的作用。
神宁炉气化装置从2016年底开始进入试车阶段,于2017年3月22日试车成功,2017年4月4日实现满负荷生产。
经过长期满负荷运行考验,各项关键参数及公用介质消耗均满足设计要求,关键性能指标达到了干煤粉加压气化技术先进水平。
本文重点介绍了神宁炉气化装置的工艺流程、技术创新点、性能指标及应用前景,以期为同类气化技术提供参考。
1神宁炉干煤粉气化技术工艺流程神宁炉干粉煤气化技术工艺流程示意图见图1。
高压煤粉通过2个交替运行的锁斗送入高压煤粉发料罐,通过密相气力输送系统,将煤粉送入顶置强旋转动量传导组合式燃烧器,进入气化炉燃烧室;在燃烧室中发生部分氧化反应,产生高温合成气和液态渣;高温合成气和液态渣并流下行进入激冷室,经水浴激冷后进行合成气和固态渣分离,大部分灰渣沉降至激冷室底部,通过渣锁斗减压外排,少量细灰随合成气进入合成气洗涤单元;含尘合成气和高压循环水通过一级文丘里充分润湿后,进入气液分离器,分离后的合成气经洗涤塔深度处理后,进入下游装置。
从激冷室底部和洗涤塔底部排出的黑水经减压后被送至闪蒸系统。
黑水经过三级闪蒸后进行分离,分离得到酸性气体到界外进行处理,三级闪蒸气体冷却后的凝液进入循环水罐回用。
灰熔聚流化床粉煤气化技术原理特点及工业应用1、前言目前中国已引进十余套大型Texaco气化装置和Lurgi气化炉供化工合成和城市煤气生产,正引进若干(已签约5套)Shell煤气化装置,促进了煤气化工业的现代化发展,大多数工厂(占总能力的70%以上)仍沿用落后的常压间歇式水煤气气化炉(达4000~5000台)。
针对中国巨大的市场需求,中科院山西煤化所历经20余年开发了具有自主知识产权的灰熔聚流化床粉煤气化技术,2001年6月在陕西城化股份有限公司实施的工业示范项目取得了成功。
2、灰熔聚流化床粉煤气化技术的开发历程针对我国幅员广阔、煤种多、烟煤多、粉煤多、煤灰份高的特点,国家从“六五”计划开始投入大量人力、物力,研制开发先进煤气化技术(包括固定床、流化床、气流床)。
其中,中国科学院山西煤炭化学研究所自八十年代初开始,在中国科学院、国家科委(75-10-05攻关)、国家计委(85-207攻关)支持下展开了流化床粉煤气化的研发,在理论研究的同时,先后建立了φ1000mm冷态、φ145mm煤种评价、φ300mm(煤1t/d)小型、φ1000mm(煤24t/d)中型、φ200mm(1.0~1.5MPa)加压等灰熔聚流化床粉煤气化试验装置。
在基础理论研究、冷态模试、实验室小型和中试试验基础上,系统地完成了灰熔聚流化床粉煤气化过程中的理论和工程放大特性研究,取得了较完整的工业放大数据和实际运行经验。
通过对气化过程中煤灰化学与气固流体力学的研究,研制了特殊结构的射流分布器,构成了特殊的气流分布和温度场分布,实现了灰熔聚,创造性地解决了强烈混合状态下煤灰团聚物与半焦选择性分离以及煤种适应性等重大技术难题;通过设计出独特的“飞灰”可控循环新工艺,保证了气化系统的稳定运行;通过对工艺过程的系统集成和优化,提高了煤的转化效率。
在大量的实验验证基础上,成功开发了灰熔聚流化床粉煤气化工业技术,获得中国科学院“灰熔聚流化床粉煤直接气化技术”、“氧/蒸汽鼓风灰熔聚流化床粉煤气化制合成气工艺”科学技术进步一等奖和国家“八五”科技攻关重大科技成果奖,以及国家发明专利(ZL 94106871.5)和实用新型专利(ZL 94202278.5)。
晋华炉煤气化技术的优势及工业化应用摘要:晋华炉煤气化技术成功开创了中国煤气化技术升级改造的先河,不仅有效提高煤炭资源的能量转化率,同时还为我国煤炭化工也提供了先进的化工设备,对国家能源的经济转型具有重大意义。
本文从晋华炉煤气技术优势以及工业化应用进行简述,并提出相应的优化措施,以供相关人员参考。
关键词:晋华炉煤气化技术;技术优势;工业化应用;优化措施1晋华炉煤气化技术优势晋华炉是由清华大学清洁能源研究院和山西煤集团共同打造的新型煤炭气化技术设备,该技术开辟了煤炭高效利用和清洁的新路径,使煤炭能量升级转化为更为清洁的能量。
首先,晋华炉煤气技术一般采用组合式烧嘴点火,并实现了点火投料一体化,气化炉从点火到满负荷运转仅需要3小时,同时在运行期间,燃料消耗少,废气污染排放较其他气化炉更少,符合当下环保技能的要求。
其次,晋华炉技术已经基本成熟,运行稳定且安全系数高。
通过数字一体化技术可以确保进料计量的稳定性,突破了煤粉供运过程中不稳定、易燃、易爆等技术壁垒。
第三,晋华炉技术不断升级和优化,其对煤种的适应性越来越强,其气化温度对煤原材料的灰熔点没有特殊要求,对于高渣煤、高灰熔点煤、褐煤等都能够进行气化,同时气化过程速度快,中炭转化率高,装置运行稳定,如烧嘴无特殊保养处理,通常一个连续的运行周期可到百天以上,年运行时间可以高达8000小时,不仅实现了晋华炉气化用煤本地化,有效降低煤炭原料的运输成本,还提高了晋华炉的运行效率。
除此之外,晋华炉煤气化技术设备整体投资较少,只需要设置磨煤系统和气化系统,结构相对简单,不需要重新进行土建工程施工,也可在原有设备基础上进行改装,设备投资成本相对较低。
同时晋华炉煤气化设备在运行中产生的高品质蒸汽可以循环再利用,符合当下环保节能的时代需求。
2晋华炉煤气化技术工业化应用优势中国是一个煤炭资源丰富的国家,煤炭储量居世界第三位,而我国能源生产和消费以煤炭为主,煤炭化工是我国社会能源安全保障的重要产业。
煤炭资源的煤炭气化与煤制气技术煤炭作为一种重要的能源资源,在中国以及全球范围内都扮演着重要的角色。
然而,传统的燃煤方式不仅会带来环境污染问题,还导致煤炭资源的过度消耗。
为了有效利用煤炭资源以及减少对环境的影响,煤炭气化与煤制气技术应运而生。
本文将介绍煤炭气化与煤制气技术的原理及其在能源领域的应用。
一、煤炭气化技术煤炭气化是指通过加热煤炭,使其在缺氧或者低氧的条件下发生化学反应,生成可燃气体的过程。
这种技术可以将煤炭中的有机物转化为合成气(Syngas),合成气主要由一氧化碳(CO)和氢气(H2)组成。
煤炭气化技术可以将煤炭中的碳、氢、氧等元素转化为可用于发电、化工和制氢等领域的能源。
煤炭气化技术有多种不同的方法,其中最常见的是煤粉煤气化和煤水煤气化。
煤粉煤气化是指将煤粉与氧气和蒸汽混合后在高温下进行反应,产生合成气。
煤水煤气化则是通过将煤浆与氧气和蒸汽共热,使其反应生成合成气。
这些技术可以根据具体的需要来选择,以满足不同领域的能源需求。
二、煤制气技术煤制气技术是利用煤炭气化过程中产生的合成气进行一系列化学反应,生成各种有机化合物的过程。
这些有机化合物可以用于石化工业、制造合成液体燃料等。
煤制气技术主要分为两种:加氢法和催化法。
加氢法是指将合成气通过催化剂的作用,与水蒸汽和催化剂表面上的金属原子发生反应,生成一系列有机化合物。
催化法则是指将合成气通过催化剂的作用,在适当的温度和压力下,发生一系列化学反应,生成目标产品。
煤制气技术可以生产出一系列有机化合物,如甲烷、甲醇、一氧化碳等。
这些产品在化工、能源等领域具有广泛的应用前景。
三、煤炭气化与煤制气技术在能源领域的应用煤炭气化与煤制气技术在能源领域具有广泛的应用前景。
首先,通过煤炭气化技术可以将煤炭资源转化为合成气,用于发电。
合成气可以直接用于燃烧发电,也可以通过气轮机发电。
其次,煤制气技术可以将合成气转化为石化产品。
合成气经过催化反应,可以生成一系列有机化合物,如甲醇、氨、乙烯等。
煤炭气化技术煤炭气化是煤炭转化的主导途径之一,是煤化工、IGCC、加氢工艺、煤液化等的龙头和基础,我公司正在建设的煤直接液化项目,以及即将建设的煤间接液化项目,煤制烯烃项目都要用到煤炭气化。
一、煤气化原理气化过程是煤炭的一个热化学加工过程。
它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。
气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。
煤炭气化包含一系列物理、化学变化。
一般包括热解和气化和燃烧四个阶段。
干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。
其他属于化学变化,燃烧也可以认为是气化的一部分。
煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。
煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。
气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。
主要反应有:1、水蒸气转化反应C+H2O=CO+H2-131KJ/mol2、水煤气变换反应CO+ H2O =CO2+H2+42KJ/mol3、部分氧化反应C+0.5 O2=CO+111KJ/mol4、完全氧化(燃烧)反应C+O2=CO2+394KJ/mol5、甲烷化反应CO+2H2=CH4+74KJ/mol6、Boudouard反应C+CO2=2CO-172KJ/mol二、煤气化工艺煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。
煤气化技术及其工业应用摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。
本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。
关键词:煤化工,煤气化技术,工业应用我国是一个以煤炭为主要能源的国家。
近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。
中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。
以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。
煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。
煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。
煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。
按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。
1煤气化工艺概述煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。
煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。
目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。
所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。
气化剂为水蒸气、纯氧、空气、CO2和H2。
煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。
壳牌煤气化技术及在中国的发展壳牌煤气化技术是一项将煤炭转化为燃料和化工产品的技术,具有高效能、低碳排放等优势。
在中国这个煤炭资源丰富的国家,发展壳牌煤气化技术有着重要的意义。
本文将从壳牌煤气化技术的工作原理、应用领域以及在中国的发展前景等方面进行探讨。
壳牌煤气化技术是一种将煤炭转化为合成气的技术。
首先,煤炭被加热至高温,使其发生热解反应,生成一种称为合成气的混合气体。
合成气主要包含一氧化碳和氢气,可以用作燃料或原料进行后续处理。
壳牌煤气化技术不仅可以高效利用煤炭资源,还能减少大气中的温室气体排放。
壳牌煤气化技术在中国有着广泛的应用领域。
首先,煤气化产生的合成气可以用作燃料。
可以用来发电,提供电力供应;也可以用于工业生产中的燃烧过程,以提供热能。
其次,合成气也可以被进一步处理,转化为多种化学品。
例如,合成气可以通过催化反应转化为甲烷,被用作天然气的替代品;还可以通过合成烃的方法生产汽油和柴油等燃料。
此外,合成气还可以用于合成氨和甲醇等化工产品的生产。
壳牌煤气化技术在中国的发展前景很广阔。
中国是世界上最大的煤炭消费国和产煤国,煤炭资源丰富。
然而,传统的燃煤方式不仅存在能源浪费和环境污染的问题,而且煤炭使用效率低下,热值偏低。
因此,开发和应用壳牌煤气化技术可以提高煤炭资源的利用效率,降低碳排放和其他污染物的排放。
此外,壳牌煤气化技术还可以提供多种化工产品的生产原料,有助于推动中国化工工业的发展。
因此,壳牌煤气化技术在中国的发展前景非常广泛。
然而,壳牌煤气化技术在中国的发展面临一些挑战。
首先,煤气化技术的投资成本较高,需要大规模的设备和复杂的工艺流程,这对于初创企业和规模较小的企业来说可能是一个困难。
其次,煤气化过程中产生的CO2需要进行处理和储存,这需要额外的成本投入。
此外,煤气化过程中的高温和高压条件对设备的要求较高,因此需要有一定的技术储备和专业人才。
综上所述,壳牌煤气化技术在中国的发展具有重要的意义。
煤气化制氢技术在工业领域的应用案例分析煤气化制氢技术是将煤炭等碳质物质在高温和一定压力下进行热解和气化,产生一种混合气体,再通过气体净化和转化过程,提取出高纯度的氢气的一种技术。
该技术广泛应用于工业领域,本文将通过几个应用案例来深入探讨煤气化制氢技术的实际应用和效果。
案例一:煤炭气化制氢应用于精细化工领域在精细化工领域,煤炭气化制氢技术被广泛应用于合成氨生产过程中。
合成氨是化肥生产的重要原料,传统生产合成氨的方法是通过自然气或液化石油气进行合成。
然而,由于天然气资源的有限和价格的不断上涨,煤炭气化制氢技术成为了一种更为经济和可持续的替代方法。
该技术利用煤炭进行气化,生成的混合气体中含有丰富的一氧化碳和氢气,通过后续制气工艺,可以获得高纯度的氢气,供给合成氨的反应过程。
这种方法的优点是利用了丰富的煤炭资源,降低了生产成本,同时也减少了对天然气等非可再生能源的依赖。
案例二:煤气化制氢应用于能源产业煤气化制氢技术还可以被应用于能源产业,例如氢能产业的发展。
氢能作为清洁能源的代表之一,具有高能量密度、无污染排放等优点,在能源转型中有着广阔的应用前景。
而煤气化制氢技术是产生氢气的重要手段之一。
通过煤气化过程,煤炭等碳质物质可以转化为一氧化碳和氢气的混合气体,将其中的氢气提取出来,经过一系列净化处理,获得高纯度的氢气。
这样的氢气可以用于燃料电池等氢能技术的发展和应用,推动清洁能源的使用。
案例三:煤气化制氢应用于钢铁行业在钢铁行业中,煤气化制氢技术也起到了重要的作用。
传统的高炉炼铁方法会产生大量的二氧化碳排放,对环境造成巨大压力。
而煤气化制氢技术可以替代传统的高炉炼铁方法,通过煤气化得到的一氧化碳和氢气混合气体,可以直接用作煤气发电,向钢铁生产提供动力。
这种方法既有效降低了对传统能源的依赖,又大幅减少了碳排放量,具有较高的环境可持续性。
综上所述,在工业领域中,煤气化制氢技术的应用案例非常广泛。
无论是作为化肥生产的重要原料,还是推动氢能产业的发展,亦或者在钢铁行业对环保的贡献,煤气化制氢技术都发挥着重要的作用。
煤气化技术煤气化技术是一种将煤炭转化为合成气的方法,这种合成气可以用作燃料或作为化学原料。
煤气化技术在能源转型和降低碳排放方面具有重要意义。
本文将详细介绍煤气化技术的原理、应用以及优缺点。
煤气化技术的原理是利用高温和压力,将煤炭与氧气反应,生成一种含有氢气和一氧化碳的混合气体,即合成气。
这种合成气可以通过调整反应条件得到不同的气体比例,例如可以得到富含氢气的合成气,也可以得到富含一氧化碳的合成气。
煤气化技术的关键步骤包括煤的干馏、气化反应以及气体的净化和分离。
煤气化技术具有广泛的应用领域。
首先,合成气可以用作燃料,替代传统的石油和天然气。
它可以用来发电、供热以及工业生产过程中的燃料需求。
其次,合成气还可以用作化学原料,用于合成有机化学品,如甲醇、乙醇和丁烯等。
这种化学原料的生产可以减少对石油和天然气的依赖,降低碳排放。
此外,煤气化技术还可以与其他能源转化技术相结合,如煤炭液化和煤炭气化联产等,进一步提高能源资源的利用效率。
然而,煤气化技术也存在一些缺点。
首先,煤气化过程需要高温和压力,能耗较高。
其次,煤气化过程中会产生大量的副产物,如焦炭和灰渣,对环境造成一定的污染。
此外,煤气化技术的建设和运营成本相对较高。
针对煤气化技术的优缺点,一些研究机构和企业正在努力改进和推广相关技术。
例如,通过改进反应条件和催化剂的使用,可以提高合成气的产率和质量,并减少能耗。
此外,通过煤气化废气的尾气治理和资源化利用,可以减少对环境的不良影响。
综上所述,煤气化技术是一种重要的能源转型和碳排放降低的手段,可以将煤炭转化为合成气,用作燃料或化学原料。
尽管该技术存在一些缺点,但通过不断改进和创新,可以进一步提高其效率和环保性。
煤气化技术的发展将有助于实现能源的可持续利用和环境的可持续发展。
(本文总字数:307字)。
煤的气化技术研究与应用煤是中国最主要的能源之一,但是从环保、能源利用效率等方面考虑,传统热力发电方式并不科学和可持续。
因此,煤的气化技术应运而生,可以将煤转化为一种更清洁、更高效的能源。
本文将对煤的气化技术进行详细论述。
一、煤的气化技术概述煤的气化技术是一种将煤转化为气体燃料的过程。
通过高温高压条件下的热化学反应,煤中的有机物质发生分解,生成可燃性气体,如一氧化碳、氢气等。
煤的气化技术可以说是目前最先进的煤化工技术之一,不仅可以提高能源利用率,降低污染排放,还可以减少对进口石油资源的依赖。
二、煤的气化技术分类根据气化过程中使用的反应剂的不同,可以将煤的气化技术分为两种:水蒸气气化和氧气气化。
1. 水蒸气气化水蒸气气化技术是煤化工领域应用最为广泛的技术之一。
水蒸气作为反应剂,与煤发生反应,生成可燃气体,主要是一氧化碳和氢气。
同时,氮气和二氧化碳等非常规气体也会随着可燃气体一起生成。
水蒸气气化技术优点在于过程不需要额外的氧气,煤的化学反应过程可以产生足够的热量,可以更加高效地利用煤炭资源。
2. 氧气气化氧气气化技术在煤化工领域中的应用比较新,是一种高温气化技术。
与水蒸气气化不同的是,氧气气化过程中只使用氧气作为反应剂,生成气体主要是氨、氮气和一氧化碳等。
氧气气化技术与水蒸气气化技术的不同之处在于其过程更加高温高压,输出的燃料气体构成也不同于水蒸气气化技术生成的气体组成。
三、煤的气化技术应用煤的气化技术源于早期煤炭的化学应用,随着科技的进步,煤的气化技术逐渐广泛应用于各个领域。
下面将介绍几个典型的应用案例。
1. 能源生产煤的气化技术可将煤转化为气态燃料,广泛应用于发电、燃料等领域。
例如,在我国许多地区的城市燃气中,主要燃料是煤气,而煤气就是通过煤的气化技术生成的。
此外,在我国东北地区的很多发电厂也都使用了煤的气化技术。
2. 化工生产煤的气化技术也可以应用于化工生产领域。
根据气态燃料生成的不同,煤气可分为城市煤气和工业煤气两种。
煤气化技术及其工业应用摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。
本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。
关键词:煤化工,煤气化技术,工业应用我国是一个以煤炭为主要能源的国家。
近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。
中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。
以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。
煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。
煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。
煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。
按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。
1煤气化工艺概述煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。
煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。
目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。
所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。
气化剂为水蒸气、纯氧、空气、CO2和H2。
煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。
煤气化根据供热原理大致可分为3种:(1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用;(2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;(3)化学循环气化(约600-800℃):该技术是近年才开发的,在煤气化炉中投入水和CO2吸收剂,产生吸收CO2的放热反应,为煤气化反应提供热量,得到产品氢(H2)、灰分和吸收剂CO2。
2煤炭气化工艺的分类和比较按照生产装置化学工程特性,煤气化工艺可分为固定床气化、流化床气化、气流床气化和熔融床气化4种类型。
2.1 固定床气化技术固定床气化也称移动床气化,其煤气化炉的主要结构特点是:原料煤块由气化炉顶部加入,用炉箅来支撑。
由下部吹入气化剂(O2或空气与水蒸气)进行气化,气化剂与煤及其残渣彼此逆向流动,因而将要离开气化炉的热灰渣可在运动过程中加热刚进入气化炉的气化剂,而即将离开气化炉的热煤气则可对原料煤干馏、气化及预热。
煤燃烧状态的温度为1200-1400℃。
煤中的灰分通过炉箅落炉底移出炉外,煤在进入气化炉前,需经破碎和筛分,除去直径小于3.175mm的细煤块,通常要求煤粒尺寸控制在6.35mm-38mm之间。
为防止煤的熔结,炉内设有搅拌器或旋转炉箅。
煤通过各反应区域,逐步被气化,气化显热用于干燥和热分解。
固定床气化过程的设计与制比较完善,操作技术方面也积累了丰富的经验。
常见有间歇式气化和连续式气化(鲁奇UGI)。
固定床气化的局限性是对床层均匀性和透气性要求较高,入炉煤要有一定的粒(块)度及均匀性。
煤的机械强度、热稳定性、黏结性和结渣性等指标都与透气性有关,因此固定床气化炉对入炉煤有很多限制。
其原料煤必须使用无烟块煤,设备能力低,由于气化温度低,产生的苯酚焦油废水等有害物质难以处理,污染大,原料可利用率低,粗合成气中甲烷含量高,只适于作城市煤气,不宜作合成气。
2.2 流化床气化技术流化床气化的气化剂由炉下部吹入,使细粒煤(小于6mm)在炉内呈并逆流反应,通常称为流态化气化。
气化剂(富氧或纯氧加水蒸气)与煤粉(或水煤浆)经特殊喷嘴进入反应室,瞬间着火,在1300℃-1600℃高温下将煤转化成CO、H2、CO2等气体,残渣以熔渣形式排出气化炉。
在流化床气化炉内,主要进行的反应有:碳的燃烧反应、二氧化碳还原反应、水蒸汽分解反应及水煤气变换反应等。
根据所用原料的粒度分布和性质,控制气化剂的流速,使床内的原料煤全部处于流化状态,在剧烈的搅动和返混中,煤粒和气化剂充分接触,同时进行着化学反应和热量传递。
这种气化炉的特点是不副产焦油,生成气中甲烷含量少。
气流床对煤种、粒度、含硫、含灰都具有较大的兼容性,其清洁、高效代表着当今技术发展潮流。
为提高碳转化率,生成气温度高,为减少显热损失,必须采用热回收技术,并处理伴随生成气的熔融灰。
常见流化床气化炉有温克勒(Winkler)、灰团聚(U-Gas)、循环流化床(CFB)、加压流化床等。
煤与气化剂能很好地混合,使炉内温度均匀,但为了防止灰分成熔块,通常在1000℃以上运行。
因此,不能用灰分融点低的煤。
为维持炉内流化状态并保证不结疤,气化温度应控制在灰软化温度以下。
要避免煤颗粒相聚而变大以致破坏流态化,显然不能使用黏结性煤。
由于炉温低、停留时间短,带来的最大问题是碳转化率低、飞灰多、残碳量高,且灰渣分离困难,其次是炉温不易控制,副产焦油少,但未分离的灰分与炭一起从炉顶排出,碳利用率低[5]。
常见流化床气化炉有温克勒(Winkler)、灰团聚(U-Gas)、循环1流化床(CFB)、加压流化床等。
2.3 气流床气化技术所谓气流床气化,一般是将气化剂(氧气和水蒸汽)夹带着煤粉或煤浆,通过特殊喷嘴送入炉膛内。
在高温辐射下,氧煤混合物瞬间着火、迅速燃烧,产生大量热量。
火焰中心温度可高达2000℃左右,所有干馏产物均迅速分解,煤焦同时进行气化,生成含一氧化碳和氢气的煤气及熔渣。
气流床气化炉内的反应基本上与流化床内的反应类似。
气流床气化炉粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
炉内维持1500℃以上高温,生成以H2、CO为主要成分的合成气,灰分熔融成渣落入炉底回收。
这种气化炉的特点是不副产焦油,生成气中甲烷含量少。
为提高碳转化率,生成气温度高,为减少显热损失,必须采用热回收技术,并处理伴随生成气的熔融灰。
气流床从原料形态分有水煤浆、干煤粉两类,Texaco、Shell最具代表性。
2.4 熔融床气化技术熔融床气化也称熔浴床气化或熔融流态床气化。
它的特点是有一个温度较高(一般为1600℃-1700℃)且高度稳定的熔池,煤粉和气化剂以切线方向高速喷入熔池内,池内熔融物保持高速旋转。
此时,气、液、固三相密切接触,在高温条件下完成气化反应,生成H2和CO 为主要成分的煤气。
熔融床有3类:熔渣床、熔盐床和熔铁床。
在现代煤气化技术开发中,熔融床技术并未完全商业化,还未见可靠的实际应用[5]。
选择气化方法通过对各种气化方法的了解,应认识到每一种具体气化方法都不是无条件地可被采用的,特别是对煤种都有一定的要求。
2.5 小结当选用合适的煤种时,则该气化方法就能发挥出效益。
反之,煤种不合适,即使是先进的气化方法也不一定能表现出其优点,甚至正常的气化过程都会发生困难。
如煤的灰熔点很高且灰渣的粘度很大,则不宜选用德士古气化法。
选择气化方炔还应考虑煤气的用途,所以,应该以可能选用的煤种和煤气的用途为出发点预选几种可供采用的气化方法,结合过程的总热效率和环保要求加以考虑和比较。
总热效率(过程热能的总出量与总入量的比值)能很好地说明气化装置综合利用热能的结果,所以这也是选择气化方法的重要依据之一。
为使气化过程的总热效率较高,希望气化炉的单炉生产能力较大,这样,可使气化炉的热损失减少。
2.3煤气化技术的工业应用煤气化是洁净、高效利用煤炭的主要途径之一。
长期的生产实践表明,在将煤炭转变成更便利的能源和产品形式的各种技术中,煤气化是应优先考虑的一种加工方法。
城市煤气、化工合成用原料气、先进的联合循环发电用燃气和综合利用系统是煤气化发展和应用的主要方向。
煤炭气化技术广泛应用于下列领域。
3.1 作为工业燃气一般热值为1100-1350大卡热的煤气,采用常压固定床气化炉、流化床气化炉均可制得。
主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。
3.2 作为民用煤气一般热值在3000-3500大卡,要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。
与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。
出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。
3.3 作为化工合成和燃料油合成原料气早在第二次世界大战时,德国等就采用费托工艺(Fischer-Tropsch)合成航空燃料油。
随着合成气化工发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐、二甲醚以及合成液体燃料等。
化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell 气化炉较为合适。
目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。
3.4 作为冶金还原气煤气中的CO和H2具有很强的还原作用。
在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。
因此,冶金还原气对煤气中的CO含量有要求。
3.5 作为联合循环发电燃气整体煤气化联合循环发电(简称IGCC)是指煤在加压下气化,产生的煤气经净化后燃烧,高温烟气驱动燃气轮机发电,再利用烟气余热产生高压过热蒸汽驱动蒸汽轮机发电。
用于IGCC的煤气,对热值要求不高,但对煤气净化度-如粉尘及硫化物含量的要求很高。
与IGCC 配套的煤气化一般采用固定床加压气化(鲁奇炉)、气流床气化(德士古)、加压气流(Shell气化炉)广东省加压流化床气化工艺,煤气热值2200-2500大卡左右。
3.6 作煤炭气化燃料电池燃料电池是由H2、天然气或煤气等燃料(化学能)通过电化学反应直接转化为电的化学发电技术。
目前主要由磷酸盐型(PAFC)、熔融碳酸盐型(MCFC)、固体氧化物型(SOFC)等。
它们与高效煤气化结合的发电技术就是IG-MCFC和IG-SOFC,其发电效率可达53%。