垂直的判定及其性质
- 格式:ppt
- 大小:1.48 MB
- 文档页数:30
垂直线的性质与判定直线是几何中最基本的图形之一,而垂直线是直线之中的一种特殊情况。
垂直线的性质和判定方法在几何学中有着重要的作用和应用。
本文将从垂直线的定义、性质和判定方法等方面进行论述,旨在加深对垂直线的理解和运用。
一、垂直线的定义垂直线是指两条直线之间的相对方向关系,即两条直线在某个点处相交,且相交角度为90度。
垂直线通常被表示为“⊥”符号,例如A⊥B,表示A与B两条直线垂直。
二、垂直线的性质1. 两条垂直线的斜率乘积为-1:在笛卡尔坐标系中,设直线A的斜率为k1,直线B的斜率为k2,则满足k1 * k2 = -1时,可以判定直线A与直线B垂直。
这是垂直线性质的一个重要推论,可以方便地判断两条直线是否垂直。
2. 垂直线的线段长相等:如果两条垂直线分别与一条水平线相交,并且线段长度相等,那么可以判定这两条直线互相垂直。
这个性质可以通过实际测量线段长来判断垂直线的存在,特别适用于工程测量和建筑设计等领域。
3. 垂直线与水平线相互垂直:根据几何学基本原理,垂直线与水平线之间的夹角为90度,即互相垂直。
这个性质可以方便地判断一条直线是否与水平线垂直,从而进一步判定直线的性质。
三、垂直线的判定方法1. 斜率判定法:如前所述,两条垂直线的斜率乘积为-1。
因此,通过计算两条直线的斜率,并判断它们的乘积是否为-1,可以判定这两条直线是否垂直。
2. 角度判定法:根据垂直线的定义,两条直线相交处的夹角为90度。
因此,通过计算两条直线相交处的夹角,并判断夹角是否为90度,可以直接判定这两条直线是否垂直。
3. 坐标判定法:对于给定的两条直线,可以确定它们的两个相交点的坐标,并计算两个点之间的斜率。
如果这两个斜率相乘得到-1,则可以判定这两条直线垂直。
四、垂直线的应用1. 地理测量和导航:垂直线的性质和判定方法在地理测量和导航中有广泛的应用。
例如,在地图测量中,垂直线可以用来确定建筑物的高度或山脉的高度。
在导航中,垂直线可用于指示航空器或船只的垂直姿态。
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
空间中垂直关系的判定与性质一.基础知识整合1.直线与平面存垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l ⊥α.直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫作垂足.(2)画法:通常把直线画成与表示平面的平行四边形的一边垂直,如图(3)判定定理 ⎭⎪⎬⎪⎫l ⊥a l ⊥b a αb αa ∩b =P ⇒l ⊥α从一条直线出发的两个半平面所组成的图形,叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的记法:如图,记作:二面角α-AB -β,也可记作2∠α—AB —β.(3)二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角,其中平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理⎭⎪⎬⎪⎫a αa ⊥β⇒α⊥β符号语言⎭⎪⎬⎪⎫α⊥βα∩β=l a αa ⊥l ⇒a ⊥β 题型一:线面垂直的判定 例1:如图所示,在Rt △ABC 中,∠B =90°,且S 为所在平面外一点,满足SA =SB =SC .D为AC 的中点.求证:SD ⊥平面ABC .证明:∵在Rt △ABC 中,∠B =90°,且D 为AC 的中点,∴BD =AD =DC .又∵SA =SB =SC ,SD为公共边,∴△SBD ≌△SAD ≌△SCD , ∴∠SDB =∠SDA =∠SCD =90°,∴SD ⊥AD ,SD ⊥BD ,∵AD ∩BD =D ,∴SD ⊥平面ABC .变式训练1:如图,已知AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,P A ⊥⊙O 所在的平面,AF ⊥PC 于F ,求证:BC ⊥平面PAC .证明:因为AB 为⊙O 的直径,所以BC ⊥AC .因为P A ⊥平面ABC ,BC平面ABC ,所以P A ⊥BC .因为P A ∩AC =A ,所以BC ⊥平面P AC .题型二:面面垂直的判定例2:已知四面体ABCD 的棱长都相等,E ,F ,G ,H 分别为AB ,AC ,AD ,BC 的中点.求证:平面EHG ⊥平面FHG .证明:如图,取CD 的中点M ,连接HM ,MG ,FM ,则四边形MHEG为平行四边形.连接EM 交HG 于O ,连接FO .在△FHG 中,O 为HG的中点,且FH =FG ,所以 FO ⊥HG .同理可证FO ⊥EM .又HG ∩EM =O ,所以FO ⊥平面EHMG .又FO 平面FHG ,所以平面EHG ⊥平面FHG .变式训练2:如图,在空间四边形ABDC中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点.:求证:平面BEF ⊥平面BDG .证明:∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC ,又EF ∥AC ,∴EF ⊥BG ,EF ⊥DG .∴EF ⊥平面BGD .∵EF 平面BEF ,∴平面BDG ⊥平面BEF .题型三:垂直关系的综合应用例3:如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠BCA=90°.点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由.证明:(1)∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC .又P A ∩AC =A ,∴BC ⊥平面P AC .(2)存在点E 使得二面角A —DE —P 为直二面角.由(1)知BC ⊥平面P AC ,又∵DE ∥BC ,∴DE ⊥平面P AC .又∵AE 平面P AC ,PE 平面P AC ,∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角.又∵P A ⊥底面ABC ,∴P A ⊥AC .∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时,∠AEP =90°.故存在点E 使得二面角A —DE —P 是直二面角.变式训练3:如图所示,P A ⊥平面ABC ,AC ⊥BC ,AB =2,BC =2,PB =6,求二面角P —BC —A 的大小.解:∵P A ⊥平面ABC ,BC 平面ABC ,∴P A ⊥BC .又AC ⊥BC ,P A ∩AC =A ,∴BC ⊥平面P AC .又PC 平面P AC ,∴BC ⊥PC .又BC ⊥AC ,∴∠PCA 为二面角P —BC —A 的平面角.在Rt △PBC 中,∵PB =6,BC =2,∴PC =2.在Rt △ABC 中,∵AB =2,BC =2,∴AC = 2.∴在Rt △P AC 中,cos ∠PCA =22,∴∠PCA=45°,即二面角P —BC —A 的大小为45°.题型四:线面垂直性质定理的应用例4:如图,在正方体ABCD -A 1B 1C 1D 1中,点E 、F 分别在A 1D 、AC 上,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1.证明:如图所示,连接AB 1、B 1C 、BD .∵DD 1⊥平面ABCD ,AC 平面ABCD .∴DD 1⊥AC .又∵AC ⊥BD ,且BD ∩DD 1=D ,∴AC ⊥平面BDD 1. ∵BD 1平面BDD 1,∴BD 1⊥AC .同理可证BD 1⊥B 1C .∴BD 1⊥平面AB 1C .∵EF ⊥A 1D ,A 1D ∥B 1C ,∴EF ⊥B 1C .又EF ⊥AC ,且AC ∩B 1C =C ,∴EF ⊥平面AB 1C ,∴EF ∥BD 1.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,点E 、F 分别在A 1D 、AC上,且EF ⊥A 1D ,EF ⊥AC .若G 是AB 的中点,则E 在A 1D 上什么位置时,能使EG ⊥平面AB1C?解:若EG⊥平面AB1C,因为BD1⊥平面AB1C,所以EG∥BD1.因为G为AB的中点,所以E为AD1的中点,即E为A1D的中点时,EG⊥平面AB1C.题型五:面面垂直性质定理的应用例5:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,求证:P A⊥平面ABC.证明:如图所示,在BC上任取一点D,作DF⊥AC于F,DG⊥AB于G,∵平面P AC⊥平面ABC,且平面P AC∩平面ABC=AC,∴DF⊥平面P AC,又∵P A平面P AC,∴DF⊥P A,同理DG⊥P A,又∵DF∩DG=D且DF平面ABC,DG平面ABC,∴P A⊥平面ABC.变式训练5:如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.求证:AM⊥PM.证明:如图连接AP.矩形ABCD中,AD⊥DC,BC⊥DC,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,∴AD⊥平面PDC,BC⊥平面PDC,又∵PD平面PDC,PC平面PDC,∴AD⊥PD,BC⊥PC,在Rt△P AD和Rt△PMC中,易知AP2=AD2+PD2=(22)2+22=12,PM2=PC2+MC2=22+(2)2=6,又∵Rt△ABM中,AM2=AB2+BM2=22+(22)2=6,∴AP2=PM2+AM2,∴AM⊥PM.题型六:垂直关系的综合应用例6:如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F A=FE,∠AEF=45°.(1)求证:EF⊥平面BCE;(2)设线段CD、AE的中点分别为P,M,求证:PM∥平面BCE.证明:(1)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD =AB,所以BC⊥平面ABEF.所以BC⊥EF.因为△ABE为等腰直角三角形,AB=AE,所以∠AEB=45°.又因为∠AEF =45°,所以∠FEB =90°,即EF ⊥BE .因为BC 平面BCE ,BE 平面BCE ,BC ∩BE =B ,所以EF ⊥平面BCE .(2)取BE 的中点N ,连接CN ,MN ,则MN 綊12AB 綊PC ,所以PMNC 为平行四边形.所以PM ∥CN . 因为CN 在平面BCE 内,PM 不在平面BCE 内,所以PM ∥平面BCE .变式训练6:如图,四棱锥S -ABCD 中,SD ⊥平面ABCD ,AB ∥DC ,AD ⊥DC ,AB =AD=1,SD =2,BC ⊥BD ,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(1)证明:DE ⊥平面SBC ;(2)证明:SE =2EB .证明:(1)连接BD ,∵SD ⊥平面ABCD ,故BC ⊥SD ,又∵BC ⊥BD ,BD ∩SD =D ,∴BC ⊥平面BDS ,∴BC ⊥DE . 作BK ⊥EC ,K 为垂足,因平面EDC⊥平面SBC ,故BK ⊥平面EDC ,BK ⊥DE . 又∵BK 平面SBC ,BC 平面SBC ,BK ∩BC =B ,∴DE ⊥平面SBC .(2)由(1)知DE ⊥SB ,DB =2AD = 2.∴SB =SD 2+DB 2=6,DE =SD ·DB SB =233,EB =DB 2-DE 2=63,SE =SB -EB =263,∴SE =2EB . 三.方法规律总结1.线面垂直的判定定理是证明线面垂直的主要方法,证明的关键是在平面内找到两条相交直线与已知直线垂直.2.在证明面面垂直时,一般方法是从一个平面内寻找另一个平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决(所作辅助线要有利于题目的证明),即由线面垂直证面面垂直.3.空间中线线、线面、面面之间的垂直关系可以相互转化,其转化关系如下:4.会用线面垂直的性质定理证明平行问题,用面面垂直的性质定理证明垂直问题.四:课后练习作业一、选择题1.设l、m为不同的直线,α为平面,且l⊥α,下列为假命题的是(B) A.若m⊥α,则m∥l B.若m⊥l,则m∥αC.若m∥α,则m⊥l D.若m∥l,则m⊥α【解析】A中,若l⊥α,m⊥α,则m∥l,所以A正确;B中,若l⊥α,m⊥l,则m∥α或mα,所以B错误;C中,若l⊥α,m∥α,则m⊥l,所以C正确;若l⊥α,m∥l,则m⊥α,所以D正确.2.在正方体ABCD—A1B1C1D1中,与AD1垂直的平面是(A)A.平面A1DCB1 B.平面DD1C1C C.平面A1B1C1D1D.平面A1DB【解析】连接A1D、B1C,由ABCD—A1B1C1D1为正方体可知,AD1⊥A1B1,AD1⊥A1D.故AD1⊥平面A1DCB1.3.如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是(C)A.BC∥平面PDF B.DF⊥平面P AEC.平面PDF⊥平面ABC D.平面P AE⊥平面ABC【解析】由题意知BC∥DF,且BC⊥PE,BC⊥AE.∵PE∩AE=E,∴BC⊥平面P AE,∴BC∥平面PDF成立,DF⊥平面P AE成立,平面P AE⊥平面ABC也成立.4.设α、β是两个不同的平面,l是一条直线,以下命题正确的是(C) A.若l⊥α,α⊥β,则lβB.若l∥α,α∥β,则lβC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【解析】A错,可能l∥β;B错,可能l∥β;C正确;D错,不一定l⊥β.5.设平面α⊥平面β,且α∩β=l,直线aα,直线bβ,且a不与l垂直,b不与l垂直,那么a与b (B)A.可能垂直,不可能平行B.可能平行,不可能垂直C.可能垂直,也可能平行D.不可能垂直,也不可能平行【解析】当a,b都平行于l时,a与b平行,假设a与b垂直,如图所示,由于b与l不垂直,在b上任取一点A,过点A作b′⊥l,∵平面α⊥平面β,∴b′⊥平面α,从而b′⊥a,又由假设a⊥b易知a⊥平面β,从而a⊥l,这与已知a不与l垂直矛盾,∴假设不正确,a与b不可能垂直.6.空间四边形ABCD,若AB、AC、AD与平面BCD所成角相等,则A点在平面BCD的射影是△BCD的(A)A.外心B.内心C.重心D.垂心【解析】设A点在平面BCD内的射影为O.可知,△OAB≌△OAC≌△OAD.∴OB=OC=OD,∴点O为外心.7.下列说法中正确命题的个数为(B)①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l不垂直于α,则α内没有与l垂直的直线;③如果一条直线与平面内的一条直线垂直,则该直线与此平面必相交;④如果一条直线和平面的一条垂线垂直,该直线必在这个平面内;⑤如果一条直线和一个平面垂直,该直线垂直于平面内的任一直线.A.0B.1C.2D.3【解析】如图(1)所示,l与α相交(不垂直),此时也有无数条直线与l垂直.故①②错误;如图(2)所示,l与α平行,此时平面内也存在无数条直线与l垂直,故③④错误;如图(3)所示,直线l与平面α的垂线m垂直,但l不在平面α内;由线面垂直的定义可知,⑤正确.8.如图,在正方形ABCD中,E、F分别为边BC,CD的中点,H是EF的中点,现沿AE、AF,EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是(A)A.AG⊥平面EFG B.AH⊥平面EFGC.GF⊥平面AEF D.GH⊥平面AEF【解析】∵AG⊥GF,AG⊥GE,GF∩GE=G,∴AG⊥平面EFG.9.如图,在四边形ABCD中,AD∥BC,AB=AD,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列命题正确的是(B)A.平面ADC⊥平面BDCB.平面ABD⊥平面ABCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【解析】在图①中,∵∠BAD=90°,AD=AB,∴∠ADB=∠ABD=45°.∵AD∥BC,∴∠DBC=45°.又∵∠BCD=45°.∴∠BDC=90°,即BD⊥CD.在图②中,此关系仍成立.∵平面ABD⊥平面BCD,∴CD⊥平面ABD.∵BA平面ADB,∴CD⊥AB.∵BA⊥AD,∴BA⊥平面ACD.∵BA平面ABC,∴平面ABC⊥平面ACD.10.如图,在正方体ABCD—A1B1C1D1中,点P在侧面BCC1B1上运动,并且总保持AP⊥BD1,则动点P在(A)A.线段B1C上B.线段BC1上C.BB1中点与CC1中点的连线上D.B1C1中点与BC中点的连线上【解析】连接AC,B1C,AB1,由线面垂直的判定可知BD1⊥平面AB1C.若AP平面AB1C,则AP⊥BD1.这样只要P在B1C上移动即可.二、填空题11.如图,在正方体ABCD—A1B1C1D1中,平面ACD1与平面BB1D1D的位置关系是________.垂直D⊥平面ABCD,AC平面【解析】∵ABCD是正方形,∴AC⊥BD.又∵DABCD,∴D1D⊥AC.∵D1D∩DB=D,∴AC⊥平面BB1D1D.∵AC平面ACD1,∴平面ACD1⊥平面BB1D1D.12.如图所示,已知P A⊥平面α,PB⊥平面β,垂足分别为A、B,α∩β=l,∠APB=50°,则二面角α-l-β的大小为________.130°【解析】如图,设平面P AB∩l=O,连接AO,BO,AB,∵P A⊥α,lα,∴P A⊥l.同理PB⊥l,而PB∩P A=P,∴l⊥平面P AB,∴l⊥AO,l⊥BO,∴∠AOB即为二面角α-l-β的平面角.结合图形知∠AOB+∠APB=180°,∴∠AOB=130°.13.如图,已知平面α⊥平面β,在α与β的交线l上,取线段AB=4,AC、BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,则CD=______.13 cm【解析】连接BC.因为平面α⊥平面β,且α∩β=l,又因为BD平面β,且BD⊥l,所以BD⊥平面α.又∵BC平面α,∴BC⊥BD.所以△CBD也是直角三角形.在Rt △BAC 中,BC =32+42=5.在Rt △CBD 中,CD =52+122=13.所以CD 长为13 cm.14.α,β是两个不同的平面,m ,n 是平面α与β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.若①③④,则②(或若②③④,则①)【解析】利用面面垂直的判定,可知①③④⇒②为真;利用面面垂直的性质,可知②③④⇒①为真.15.如图平面ABC ⊥平面BDC ,∠BAC =∠BDC =90°,且AB =AC =a ,则AD =_______a【解析】如图所示,取BC 的中点E ,连接ED ,AE ,∵AB =AC ,∴AE ⊥BC ,∵平面ABC ⊥平面BDC .∴AE ⊥平面BDC ,∴AE ⊥ED .在Rt △ABC 和Rt △BCD 中,AE =ED =12BC =22a ,∴在Rt △AED 中,AD =AE 2+ED 2=a .三、解答题16.如图所示,AB 是圆O 的直径,P A 垂直于圆O 所在的平面,M 是圆周上任意一点,AN ⊥PM ,垂足为N .求证:AN ⊥平面PBM .证明:设圆O 所在的平面为α,∵P A ⊥α,且BM α,∴P A ⊥BM .又∵AB 为⊙O 的直径,点M 为圆周上一点,∴AM ⊥BM ,∵直线P A ∩AM =A ,∴BM ⊥平面P AM .又AN 平面P AM ,∴BM ⊥AN .这样,AN 与PM ,BM 两条相交直线垂直.故AN ⊥平面PBM .17.如图所示,过S 引三条长度相等但不共面的线段SA ,SB ,SC 且∠ASB =∠ASC =60°,∠BSC =90°.求证:平面ABC ⊥平面BSC .【证明】(法一)取BC 的中点D ,连接AD ,SD .∵∠ASB =∠ASC ,且SA =SB=AC ,∴AS =AB =AC .∴AD ⊥BC .又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD =SD .∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD .又∵SD ∩BC =D ,∴AD⊥平面BSC .又AD 平面ABC ,∴平面ABC ⊥平面BSC .(法二)同法一证得AD ⊥BC ,SD ⊥BC ,则∠ADS 即为二面角A —BC —S 的平面角.∵∠BSC =90°,令SA =1,则SD =22,AD =22,∴SD 2+AD 2=SA 2.∴∠ADS =90°.∴平面ABC ⊥平面BSC .18.如图,在三棱锥S -ABC 中,SA ⊥平面ABC ,AB ⊥BC ,DE 垂直平分SC ,分别交AC 、SC 于D 、E ,且SA =AB =a ,BC =2a .(1)求证:SC ⊥平面BDE ;(2)求平面BDE 与平面BDC 所成二面角的大小.(1)证明:∵SA ⊥平面ABC ,又AB 、AC 、BD 平面ABC ,∴SA ⊥AB ,SA ⊥AC ,SA ⊥BD ,∴SB =SA 2+AB 2=2a .∵BC =2a ,∴SB =BC .∵E 为SC 的中点,∴BE ⊥SC .又DE ⊥SC ,BE ∩DE =E ,∴SC ⊥平面BDE .(2)由(1)及BD 平面BDE ,得BD ⊥SC .又知BD ⊥SA ,∴BD ⊥平面SAC .∴BD ⊥AC 且BD ⊥DE .∴∠CDE 为平面BDE 与平面BDC 所成二面角的平面角.∵AB ⊥BC ,AC =AB 2+BC 2=3a .∴Rt △SAC中,tan ∠SCA =SA AC =33,∴∠SCA =30°.∴∠CDE =60°,即平面BDE 与平面BDC 所成二面角为60°.19.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M为AB 中点,D 为PB 中点,且PMB ∆为正三角形.(1)求证:DM APC ∥平面;(2)求证:ABC APC ⊥平面平面.证明:(1)∵M 为AB 中点,D 为PB 中点,∴MD //AP ,又MD不在平面APC 上,∴MD //平面APC.(2)∵△PMB 为正三角形,又D 为PB 中点. ∴MD ⊥PB .又由(1)知MD //A P , ∴AP ⊥PB . 又AP ⊥PC , 且PB ∩PC =P ,∴AP ⊥平面PBC , ∴AP ⊥BC , 又∵AC ⊥BC , 且AP ∩AC =A ∴BC ⊥平面APC , 又BC 在平面ABC 内,∴平面ABC ⊥平面APC .20.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中 点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1;(2)M 是AB 的中点.证明:(1)∵ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,AD 1平面ADD 1A 1,∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC .又∵MN ⊥平面A 1DC ,∴MN ∥AD 1. MD B P C A(2)连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM .又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 21.如图所示,P 是四边形ABCD 所在平面外一点,ABCD 是∠DAB =60°且边长为a 的菱形,侧面P AD 为正三角形,其所在平面垂直于底面ABCD .(1)若G 为AD 边的中点,求证:BG ⊥平面P AD ;(2)求证:AD ⊥PB .证明:(1)连接PG ,BD .由题知△P AD 为正三角形,G 是AD 的中点,∴PG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PG 平面P AD ,∴PG ⊥平面ABCD ,∴PG ⊥BG .又∵四边形ABCD 是菱形且∠DAB =60°,∴△ABD 是正三角形,∴BG ⊥AD .又AD 平面P AD ,PG 平面P AD ,且AD ∩PG =G ,∴BG ⊥平面P AD .(2)由(1)可知BG ⊥AD ,PG ⊥AD .又BG 平面PBG ,PG 平面PBG ,且BG ∩PG =G ,AD ⊥平面PBG ,∴AD ⊥PB .。
垂直线的性质与判定垂直线是几何学中的一个重要概念,在解题过程中经常会涉及到垂直线的性质和判定。
本文将探讨垂直线的定义、性质以及如何准确判定两条直线是否垂直的方法。
一、垂直线的定义在平面几何中,垂直线又称为垂直于某一直线或垂直于某一平面的线段。
当两条直线的交角为90度时,我们可以称这两条直线垂直。
垂直线以其与其他线段之间的垂直关系而得名,具有以下几个重要性质。
二、垂直线的性质1. 互相垂直线的斜率的乘积为-1若两条直线的斜率分别为k1和k2,且k1*k2=-1,则这两条直线互相垂直。
2. 垂直线段的端点连线长度相等若两个线段的端点分别为A、B和C、D,并且AC与BD垂直,则AC的长度等于BD的长度。
3. 垂直线的特殊性质垂直线与直线组成直角。
在平面几何中,如果有一直线与另一直线垂直相交,则两直线之间形成的角为直角。
三、判定垂直线的方法1. 斜率判定法如果两条直线的斜率乘积为-1,即k1*k2=-1,则两条直线垂直。
2. 互相垂直线段端点连线长度相等法如果有两个线段,它们的端点分别为A、B和C、D,并且AC与BD互相垂直,那么这两个线段长度相等。
3. 垂直线的特殊性质判定法如果一条直线与另一直线形成的角为90度,则两条直线垂直。
四、示例以下是一些关于判定垂直线的示例问题。
1. 已知直线L1的斜率为2,判断直线L2是否与L1垂直。
解答:如果直线L2的斜率为-1/2,则L2与L1垂直。
2. 在平面直角坐标系中,已知线段AB与线段BC相交于点B,且AB与BC的长度相等,判断线段AB与BC是否垂直。
解答:线段AB与BC垂直的判据是线段AB与BC的端点连线长度相等。
3. 以AB为直径的圆与MN相交于点C,若MC的长度为8cm,判断AC与BC是否垂直。
解答:判定AC与BC垂直的方法是通过角度判断,即判断∠ACB 是否为90度。
五、总结垂直线作为几何学中的重要概念,其性质和判定方法在解题过程中起到重要的作用。
本文讨论了垂直线的定义、性质和判定方法,并通过示例问题对判定垂直线的方法进行了说明。
垂直线的判定与性质在几何学中,垂直线是一个重要的概念。
在本文中,我们将讨论如何判定两条线是否垂直以及垂直线的性质。
通过了解垂直线的定义和性质,我们可以更好地理解几何学中的垂直关系。
一、垂直线的定义垂直线是指两条线或线段之间的夹角为90度的线。
当两条线或线段的夹角等于90度时,我们就可以说它们是垂直的。
这个定义告诉我们如何判定两条线是否垂直。
二、垂直线的判定方法1. 几何推理法:通过几何推理的方法,可以快速判定两条线是否垂直。
如果两条线段之间的夹角为90度,那么它们就是垂直的。
通过观察几何图形的形状和角度,我们可以轻松判定线段是否垂直。
2. 斜率法:在解析几何中,我们可以使用斜率来判断两条线段是否垂直。
如果两条线段的斜率的乘积为-1,那么它们是垂直的。
具体的计算方法是比较两条线段的斜率乘积是否等于-1,如果等于-1,则说明它们是垂直的。
三、垂直线的性质1. 互补角性质:两条垂直线之间的夹角是互补角,即它们的和等于90度。
这个性质使得我们可以通过已知其中一条垂直线的角度,快速计算出另一条垂直线的角度。
2. 线段垂直平分性质:如果一条线段与另外两条垂直线相交,并将它们分成两部分,那么这条线段就是这两条垂直线的垂直平分线。
这个性质在几何证明中经常被使用,它说明了垂直线的重要性。
3. 垂直线的延伸性:垂直线可以无限延伸。
无论在平面内或空间中,一条垂直线都可以一直延伸下去,没有止境。
这个性质使得垂直线在几何学中具有独特的特点和应用。
四、垂直线的应用1. 建筑设计:在建筑设计中,垂直线的应用非常广泛。
例如,在建造一栋建筑物时,垂直线被用来确保墙面的垂直和地面的垂直。
通过使用垂直线,可以保证建筑物的结构稳定和美观。
2. 地图标示:在地图上,垂直线通常用来标示方向。
例如,纬度线和经度线是垂直于彼此的线,它们被用来确定地球上任意一个地点的位置。
通过使用垂直线,我们可以准确地定位和导航。
3. 几何证明:在几何证明中,垂直线经常被用来推导其他几何命题。
高中几何知识解析垂直线的性质与判定在几何学中,垂直线是一种重要的概念。
垂直线的性质与判定在解决几何问题时起着重要的作用。
本文将对高中几何知识中垂直线的性质与判定进行详细解析。
一、垂直线的性质垂直线的性质主要表现在以下几个方面:1. 垂直线的定义垂直线是指两条直线相交的情况下,相交角度为90度的直线。
就是说,两条直线互相垂直。
在数学上,通常用垂直符号“⊥”来表示垂直关系。
2. 垂直线的特点垂直线的特点主要体现在以下几个方面:(1) 垂直线的斜率积为-1。
斜率是直线的一个重要性质,垂直线的斜率之积为-1。
(2) 垂直线上的线段等于零度线段。
两个垂直线上的线段,在相交点处等于零度线段。
3. 垂直线的性质应用在实际生活和学习中,垂直线的性质应用广泛。
比如,在建筑设计中,为了保证立柱的稳定性,垂直线的使用是必不可少的。
此外,在地图测量、平面布局等方面,垂直线的运用也十分重要。
二、垂直线的判定方法在几何学中,判定两条线是否垂直是非常重要的。
有以下几种常见的判定方法:1. 通过斜率判定两条直线的斜率之积为-1时,可以判定这两条直线垂直。
具体的判定步骤如下:(1) 计算两条直线的斜率。
(2) 如果两条直线的斜率之积等于-1,则可以判断这两条直线垂直。
2. 通过向量判定两条非零向量的数量积为0时,可以判定这两条向量垂直。
具体的判定步骤如下:(1) 计算两条向量的数量积。
(2) 如果两条向量的数量积等于0,则可以判断这两条向量垂直。
3. 通过坐标判定两条线段所在直线的法向量相同时,可以判定这两条线段垂直。
具体的判定步骤如下:(1) 确定两条线段的方向向量。
(2) 计算两条线段方向向量之间的夹角。
(3) 如果两条线段方向向量之间的夹角为90度,则可以判断这两条线段垂直。
三、垂直线的应用举例1. 正交坐标系在二维平面几何中,正交坐标系是一种常见的坐标系形式。
正交坐标系的特点就是两条坐标轴垂直。
2. 直角三角形直角三角形是一种特殊的三角形,其中有一个内角为90度。
垂直线与垂直线性质的判定一、垂直线的定义与性质1.垂直线的定义:在同一平面内,两条直线相交成直角时,这两条直线互相垂直。
其中一条直线称为另一条直线的垂线。
2.垂直线的性质:(1)垂直线相交成直角;(2)垂线段的性质:垂线段是从一点到直线的最短距离;(3)垂线与直线的交点称为垂足;(4)在同一平面内,通过一点可以作一条且只能作一条垂线与已知直线垂直。
二、垂直线性质的判定1.如果两条直线相交成直角,那么这两条直线互相垂直;2.如果一条直线与另一直线垂直,那么这条直线上的任意一点到另一条直线的距离相等;3.在同一平面内,如果通过一点作已知直线的垂线,那么这条垂线是唯一的;4.在同一平面内,如果两条直线互相垂直,那么它们的斜率的乘积为-1。
三、垂直线的相关定理与公式1.定理:在同一平面内,如果一条直线与另外两条直线分别垂直,那么这两条直线互相平行;2.定理:在同一平面内,如果一条直线与另外两条直线分别平行,那么这两条直线互相垂直;3.公式:直线的斜率k与垂线的斜率k1满足k × k1 = -1。
四、垂直线在实际应用中的例子1.在建筑设计中,垂直线用于确定建筑物立面的垂直度;2.在机械制造中,垂直线用于保证零件的相互垂直度;3.在地理测绘中,垂直线用于确定地球表面上某一点的经度;4.在医学影像学中,垂直线用于诊断和分析患者的器官结构。
五、垂直线的相关练习题1.判断题:在同一平面内,如果两条直线相交成直角,那么这两条直线互相垂直。
(对)2.判断题:在同一平面内,如果一条直线与另一直线垂直,那么这条直线上的任意一点到另一条直线的距离相等。
(对)3.选择题:在同一平面内,通过一点作已知直线的垂线,那么这条垂线是(唯一的一条)。
4.计算题:已知直线L的斜率为2,求与直线L垂直的直线的斜率。
(-1/2)5.应用题:建筑设计中,需要确定一座建筑物立面的垂直度,请问如何利用垂直线来实现?(答案:通过测量和绘制垂直线来确定建筑物的垂直度)习题及方法:1.习题:判断题。
课题 直线与平面垂直的判定及其性质知识点一:直线与平面垂直的判定与性质1.直线与平面垂直的判定定理和性质定理2.直线与平面所成的角(线面所成的角关键:过斜线上一点作平面的垂线)(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫作这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.(2)线面角θ的取值范围:0°≤θ≤90°.规律总结1. 过一点有且只有一条直线与已知平面垂直.2.过一点有且只有一个平面与已知直线垂直.知识点二:平面与平面垂直的判定与性质1.平面与平面垂直的判定定理与性质定理2. 二面角 平面与平面垂直的定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面 二面角的平面角:.AOB l αβ∠--即为二面角的平面角 题型一:线面垂直的判定与性质证明直线与平面垂直的方法:(1)利用判定定理(a ⊥b,a ⊥c,b ∩c=M,b ⊂α,c ⊂α⇒a ⊥α);(2)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β);(3)利用面面垂直的性质定理(α⊥β,α∩β=l,a ⊥l,a ⊂β⇒a ⊥α);(4)利用面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l ⊥γ).例1:如图,已知P 是菱形ABCD 所在平面外一点,且PA =PC ,求证:AC ⊥平面PBD .【证明】 设AC ∩BD =O ,由题意知O 为AC 的中点,连接PO ,因为PA =PC ,所以PO ⊥AC ,又因为ABCD 是菱形,所以BD ⊥AC ,而PO ∩BD =O ,PO ⊂平面PBD ,BD ⊂平面PBD ,所以AC ⊥平面PBD .变式1:题型二:面面垂直的判定与性质证明面面垂直的思路(1)利用面面垂直的定义(作出两平面构成的二面角的平面角,计算平面角为90°);(2)利用面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).2.空间垂直关系之间的转化例2:如图,在直三棱柱111-ABC A B C 中,1111=A B AC ,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且⊥AD DE F ,为11B C 的中点.求证:平面⊥ADE 平面11BCC B .证明:因为111ABC -A B C 是直三棱柱,所以1CC ⊥平面ABC .又因为⊂AD 平面ABC ,所以1⊥CC AD .又因为⊂1AD⊥DE,CC ,DE 平面111BCC B ,CC ∩DE =E ,所以AD⊥平面11BCC B . 又因为⊂AD 平面ADE ,所以平面⊥ADE 平面11BCC B . 变式2:如图,在四面体ABCD 中,平面BAD ⊥平面CAD,∠BAD=90°.M,N,Q 分别为棱AD,BD,AC 的中点.(1)求证:CD ∥平面MNQ; (2)求证:平面MNQ ⊥平面CAD.一、选择题1.在正方体ABCD A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1, ∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1.又A 1E 平面CEA 1B 1,∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.故选C.]1 2 3 42.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF[根据折叠前、后AH ⊥HE ,AH ⊥HF 不变,∴AH ⊥平面EFH ,B 正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF平面AEF,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;由条件证不出HG⊥平面AEF,∴D不正确.故选B.]3.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线是________;与AP垂直的直线是________.答案:AB,BC,AC;AB[∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥AP,故与AP垂直的直线是AB.]4.如图7412所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M 满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)DM⊥PC(或BM⊥PC) [连接AC,BD,则AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.5.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β. ②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,mα,那么m∥β. ④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)②③④[对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线lα,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正确.对于③,因为α∥β,所以α,β没有公共点.又mα,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n 与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.]6.如图7416,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.a或2a[∵B1D⊥平面A1ACC1,∴CF⊥B1D.为了使CF⊥平面B1DF,只要使CF⊥DF(或CF⊥B1F).设AF=x,则CD2=DF2+FC2,∴x2-3ax+2a2=0,∴x=a或x=2a.]7.如图7413,在三棱锥PABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD; (2)求证:平面BDE⊥平面PAC; (3)当PA∥平面BDE时,求三棱锥EBCD的体积.[解] (1)证明:因为PA ⊥AB ,PA ⊥BC ,所以PA ⊥平面ABC .又因为BD 平面ABC ,所以PA ⊥BD .(2)证明:因为AB =BC ,D 为AC 的中点,所以BD ⊥AC .由(1)知,PA ⊥BD ,所以BD ⊥平面PAC ,所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE .因为D 为AC 的中点,所以DE =12PA =1,BD =DC = 2. 由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC ,所以三棱锥E BCD 的体积V =16BD ·DC ·DE =13.] 8.如图7414,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊆/平面ABC ,AB 平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC 平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD . 因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC ,所以AD ⊥平面ABC .又因为AC 平面ABC ,所以AD ⊥AC .9. 如图,三棱柱ABC -A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=BC= AA1,D 是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC.(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.。
线面、面面垂直的判定与性质知识回顾1.直线与平面垂直的判定(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α.(2)判定定理文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面垂直的性质文字表述:垂直于同一个平面的两条直线平行。
符号表述:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.4.平面与平面的垂直的判定(1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β⇒α⊥β. 5.平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.题型讲解题型一例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交 B.相交但不一定垂直C.垂直但不相交 D.不垂直也不相交答案:C例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.1答案:A例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.题型二例4、若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒M ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α.A .1B .2C .3D .4答案:C例5、如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12CD 12AB , ∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.题型三例6、直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于( )A .40°B .50°C .90°D .150°答案:B例7、在正方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角是________; (2)直线A 1B 与平面ABC 1D 1所成的角是________; (3)直线A 1B 与平面AB 1C 1D 所成的角是________. 答案:(1)45° (2)30° (3)90° 题型四例6、在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .32答案:B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角. ∵DO =OB =BD =32, ∴∠BOD =60°.]例7、过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.答案:45° 题型五例8、下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案:C例9、如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.9.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.题型六例10、平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交 D.以上都有可能答案:D例11、如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=45.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.11.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2.∴AD⊥BD.又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD⊂面ABCD,∴BD⊥面PAD,又BD⊂面BDM,∴面MBD⊥面PAD.(2)解过P作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=23.在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=163.跟踪训练1.正方体A 1B 1C 1D 1-ABCD 中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于( )A .33B .22C . 2D . 3答案:C[解析] 设AC 、BD 交于O ,连A 1O ,∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面AA 1O ,∴BD ⊥A 1O ,∴∠A 1OA 为二面角的平面角. tan ∠A 1OA =A 1AAO=2,∴选C.2.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个 C .有且只有一个或无数个 D .可能不存在答案:C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]3.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段 答案:A[解析] ∵DD 1⊥平面ABCD , ∴D 1D ⊥AC ,又AC ⊥BD ,∴AC ⊥平面BDD 1, ∴AC ⊥BD 1.同理BD 1⊥B 1C. 又∵B 1C ∩AC =C , ∴BD 1⊥平面AB 1C.而AP ⊥BD 1,∴AP ⊂平面AB 1C.又P ∈平面BB 1C 1C ,∴P 点轨迹为平面AB 1C 与平面BB 1C 1C 的交线B 1C.故选A. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________.答案:90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M .∴∠C 1MN =90°.5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AA′⊥A′B′,BB′⊥A′B′,且AA′=3,BB′=4,A′B′=2,则三棱锥A -A′BB′的体积V =________.答案: 4[解析] ∵α⊥β,α∩β=A′B′,AA′⊂α,AA′⊥A′B′, ∴AA′⊥β,∴V =13S △A′BB′·AA′=13×(12A′B′×BB′)×AA′=13×12×2×4×3=4.6. 如图所示,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过点A 作AE ⊥PC 于点E .求证:AE ⊥平面PBC .证明 ∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC . 又∵AE ⊂平面PAC ,∴BC ⊥AE .又∵PC ⊥AE ,且PC ∩BC =C ,∴AE ⊥平面PBC .7.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE.证明 取CE 的中点G ,连接FG ,BG ,AF. ∵F 为CD 的中点, ∴GF ∥DE ,且GF =12DE.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE.则GF ∥AB. 又∵AB =12DE ,∴GF =AB.则四边形GFAB 为平行四边形.于是AF ∥BG. ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD.∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF. 又∵CD ∩DE =D ,CD ,DE ⊂平面CDE , ∴AF ⊥平面CDE.∵BG ∥AF ,∴BG ⊥平面CDE.∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE.8.如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面PAC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.证明(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC.而四边形ABCD是正方形,∴AC⊥BD.又BD∩PD=D,∴AC⊥平面PBD.又AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC.∴∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D是45°的二面角.6.如图,在直三棱柱ABC—A1B1C1中,AA1=AC,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)若D、E分别是A1C1和BB1的中点,求证:DE∥平面ABC1.11解析: (1)∵直三棱柱ABC -A 1B 1C 1中,AA 1=AC , ∴ACC 1A 1为正方形, ∴A 1C ⊥AC 1.又∵BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1, 又∵A 1C ⊂平面A 1ACC 1, ∴平面A 1ACC 1⊥平面ABC 1.(2)如图,取AA 1的中点F ,连接DF 、EF.∵D 、E 、F 分别为A 1C 1、BB 1、AA 1的中点, ∴DF ∥AC 1,EF ∥AB ,DF∩EF =F , ∴平面DEF ∥平面ABC 1, ∴DE ∥平面ABC 1.。
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a ⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】题设主要条件是AB1⊥BC,而结论是AB1⊥A1C,题设,题断有对答性,可在ABB1A1上作文章,只要取A1B1中点D1,就把异面直线AB1与BC1垂直关系转换到ABB1A1同一平面内AB1与BD1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB1与A1C垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6,AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3,∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( )A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有 ( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为 ( )A.1B.2C.552D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1C.2D.38.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( ) 第3题图A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC所成角的大小.第11题图 第12题图第13题图第14题图15.如图所示,P A⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD =2,侧棱PB=15,PD =3.(1)求证:BD⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP ⊥平面ABCD .(2)求平面PNC 与平面CC ′D ′D 所成的角.(3)求点C 到平面D ′MB 的距离.第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.5.A 依题意,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A.6.D 过P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l ⊥α,∴l ⊥m11.23cm 2 设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4,又AC 2+BC 2=AB 2,∴a 2=2. S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线 第18题图定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB .14.(1)证明:∵H 为△VBC 的垂心,∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC ,∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD ,∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE ,∴VC ⊥面ABE ,∴VC ⊥DE ,∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE .∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AB .又AD ⊥AB ,∴AB ⊥平面P AD .∴AB ⊥AE ,即AB ⊥MN .又CD ∥AB ,∴MN ⊥CD .(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12. 又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D , ∴BD ⊥平面P AD .(2)由BD ⊥平面P AD ,BD 平面ABCD .∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E ,又PE 平面P AD ,第15题图解第16题图解∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角.∴∠PDE =60°,∴PE =PD sin60°=23233=⨯. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF ,∴∠PFE 是二面角P —BC —A 的平面角.又EF =BD =12,在Rt △PEF 中, tan ∠PFE =433223==EF PE . 故二面角P —BC —A 的大小为arctan 43. 17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°.∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △MCD 中可知∠MCD =arctan 21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高. ∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
直线平面平行垂直的判定及其性质知识点直线和平面的平行与垂直是几何学中的重要概念,它们在解决几何问题中往往起着关键性的作用。
判定直线与平面的平行与垂直关系的方法有很多,下面将逐一介绍。
1.直线与平面平行的判定及性质:直线与平面平行的判定方法有以下三种:(1)法向量判定法:如果直线的方向向量与平面的法向量的点积为零,即直线的方向向量与平面的法向量垂直,则直线与平面平行。
(2)截距判定法:如果直线与平面的两个不同点的坐标满足平面方程,则直线与平面平行。
(3)斜率判定法:如果直线的斜率与平面的法向量的斜率相同或不存在,则直线与平面平行。
直线与平面平行的性质有:(1)两个平行直线与同一个平面的交点之连线垂直于这两个直线。
(2)两个平行直线的斜率相同。
(3)两个平行直线的方向向量相同。
(4)两个平行直线的距离在平行直线之间是相等的。
2.直线与平面垂直的判定及性质:直线与平面垂直的判定方法有以下两种:(1)法向量判定法:如果直线的方向向量与平面的法向量的点积为零,即直线的方向向量与平面的法向量垂直,则直线与平面垂直。
(2)斜率判定法:如果直线的斜率乘以平面的法向量的斜率为-1或直线的斜率不存在且平面的法向量的斜率存在,则直线与平面垂直。
直线与平面垂直的性质有:(1)直线与平面垂直,则直线上的每个点到平面上的任意一点的连线垂直于平面。
(2)直线与平面垂直,则与直线垂直的平面必过直线上的一点。
(3)两个平行的直线与同一个平面的交线垂直于这两个直线。
(4)两个平行直线的方向向量的点积为零。
(5)两个垂直直线的斜率乘积为-1(6)两个平行直线的斜率乘积为1总结起来,判定直线与平面平行与垂直的方法有法向量判定法和斜率判定法。
关于性质,平行直线之间的距离相等,垂直直线的斜率乘积为-1,直线上的每个点到平面上的任意一点的连线垂直于平面等等。
这些性质在解决几何问题时都有非常重要的应用价值。
5.5 直线、平面垂直的判定及其性质1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直. (2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言 符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =O l ⊥al ⊥b⇒l ⊥α性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言 符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=al ⊥a⇒l ⊥α考点一 直线与平面垂直的判定与性质直线与平面垂直的判定与性质是每年高考的必考内容,题型多为解答题,难度适中,属中档题.常见的命题角度有 (1)证明直线与平面垂直; (2)利用线面垂直的性质证明线线垂直.角度一:证明直线与平面垂直例1.已知直线a ,b 和平面α,且a ⊥b ,a ⊥α,则b 与α的位置关系为( ) A .b ⊂α B .b ∥α C .b ⊂α或b ∥α D .b 与α相交 变式1-1.(教材习题改编)设m ,n 表示两条不同的直线,α,β表示两个不同的平面,下列命题为真命题的是( )A .若m ⊥α,α⊥β,则m ∥βB .若m ∥α,m ⊥β,则α⊥βC .若m ⊥n ,m ⊥α,则n ∥αD .若m ∥α,n ∥β,α⊥β,则m ⊥n 变式1-2.(教材习题改编)PD 垂直于正方形ABCD 所在的平面,连接PB ,PC ,P A ,AC ,BD ,则一定互相垂直的平面有________对.变式1-3.如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =12AB ,PH为△P AD 中AD 边上的高.求证:(1)PH ⊥平面ABCD ; (2)EF ⊥平面P AB .角度二:利用线面垂直的性质证明线线垂直例2.(2015·江苏高考)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.判定直线和平面垂直的4种方法(1)利用判定定理; (2)利用判定定理的推论(a ∥b ,a ⊥α⇒b ⊥α); (3)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β); (4)利用面面垂直的性质. 当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.变式2-1.(2017·长兴中学适应性考试)设α,β,γ是不同的平面,m ,n 是不同的直线,则由下列条件能得出m ⊥β的是( )A .n ⊥α,n ⊥β,m ⊥αB .α∩γ=m ,α⊥γ,β⊥γC .m ⊥n ,n ⊂βD .α⊥β,α∩β =n ,m ⊥n变式2-2.如图,S 是Rt △ABC 所在平面外一点,且SA =SB =SC .D 为斜边AC 的中点.(1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC .考点二 面面垂直的判定与性质(重点保分型考点——师生共研) 例3.(2016·四川高考)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .1.证明面面垂直的2种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决.2.三种垂直关系的转化《5.5 直线、平面垂直的判定及其性质》课后练习1.(2017·青岛质检)设a ,b 是两条不同的直线,α,β是两个不同的平面,则能得出a ⊥b 的是( )A .a ⊥α,b ∥β,α⊥βB .a ⊥α,b ⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β2.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,P A⊥平面ABC,则四面体P -ABC中直角三角形的个数为()A.4 B.3C.2 D.13.(2017·南昌模拟)设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()A.不存在B.有且只有一对C.有且只有两对D.有无数对4.(2017·吉林实验中学测试)设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是()A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c5.(2017·贵阳市监测考试)如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是()A.AP⊥PB,AP⊥PC B.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PC D.AP⊥平面PBC6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有____________;与AP垂直的直线有________.7.如图所示,在四棱锥P -ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.9.如图,在三棱锥P-ABC中,已知侧面P AC⊥底面ABC,且P A=PC=2,AB=4,∠APC=90°,AC=BC. (1)求证:BC⊥平面P AC;(2)若E为PC的中点,求直线BE与底面ABC所成角的正切值.。
第13讲 垂直的判定与性质1. 线面垂直的定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足.(线线垂直→线面垂直)2. 判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 符号语言表示为:若l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α,则l ⊥α3. 面面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥.4. 判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. (线面垂直→面面垂直)5. 线面垂直性质定理:垂直于同一个平面的两条直线平行. (线面垂直→线线平行)6. 面面垂直性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号语言表示为:若αβ⊥,l αβ=,a α⊂,a l ⊥,则a β⊥.(面面垂直→线面垂直)【例1】四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且EF ,90BDC ∠=,求证:BD ⊥平面ACD .证明:取CD 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点,∴EG 12//AC =,12//FG BD =. 又,AC BD =∴12FG AC =,∴在EFG ∆中,222212EG FG AC EF +==,∴EG FG ⊥,∴BD AC ⊥,又90BDC ∠=,即BD CD ⊥,AC CD C =, ∴BD ⊥平面ACD .【例2】已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.解:取CD 的中点F ,连接EF 交平面11ABC D 于O ,连AO .由已知正方体,易知EO ⊥平面11ABC D ,所以EAO ∠为所求. 在Rt EOA ∆中,11122EO EF A D ==,AE ==,sin EO EAO AE ∠=所以直线AE 与平面11ABC D. 【例3】三棱锥P ABC -中,PA BC PB AC ⊥⊥,,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的垂心.证明:连接OA 、OB 、OC ,∵ PO ⊥平面ABC , ∴ ,PO BC PO AC ⊥⊥.又 ∵ PA BC PB AC ⊥⊥,,∴ BC PAO AC PBO ⊥⊥平面,平面,得AO BC BO AC ⊥⊥,, ∴ O 为底面△ABC 的垂心.【例4】已知Rt ABC ∆,斜边BC //平面α,,A α∈ AB ,AC 分别与平面α成30°和45°的角,已知BC =6,求BC 到平面α的距离.解:作1BB α⊥于1B ,1CC α⊥于1C ,则由//BC α,得 11BB CC =,且1CC 就是BC 到平面α的距离,设1CC x =,连结11,AB AC ,则1130,45BAB CAC ∠=∠=,∴,2AC AB x ==,在Rt ABC ∆中,6,90BC BAC =∠=,∴223624x x =+,∴x =,即BC 到平面α. 【例5】如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面是菱形且∠C 1CB =∠C 1CD =∠BCD =60°,(1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,可使A 1C ⊥面C 1BD ?解:(1)证明:连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O , ∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CDC 1B 1CB Aα又∵∠BCC 1=∠DCC 1,C 1C 是公共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D ∵DO =OB ,∴C 1O ⊥BD ,但AC ⊥BD ,AC ∩C 1O =O ∴BD ⊥平面AC 1,又C 1C ⊂平面AC 1,∴C 1C ⊥BD .(2)由(1)知BD ⊥平面AC 1,∵A 1O ⊂平面AC 1,∴BD ⊥A 1C ,当1CDCC =1时,平行六面体的六个面是全等的菱形,同理可证BC 1⊥A 1C ,又∵BD ∩BC 1=B ,∴A 1C ⊥平面C 1BD .【例1】已知正方形ABCD 的边长为1,分别取边BC 、CD 的中点E 、F ,连结AE 、EF 、AF ,以AE 、EF 、F A 为折痕,折叠使点B 、C 、D 重合于一点P .(1)求证:AP ⊥EF ;(2)求证:平面APE ⊥平面APF . 证明:(1)如右图,∵∠APE =∠APF =90°,PE ∩PF =P , ∴ P A ⊥平面PEF . ∵EF ⊂平面PEF ,∴P A ⊥EF .(2)∵∠APE =∠EPF =90°,AP ∩PF =P ,∴PE ⊥平面APF . 又PE ⊂平面P AE ,∴平面APE ⊥平面APF . 【例2】如图, 在空间四边形ABCD 中,,,AB BC CD DA == ,,E F G分别是,,CD DA AC 的中点,求证:平面BEF ⊥平面BGD .证明:,AB BC G =为AC 中点,所以AC BG ⊥.同理可证,AC DG ⊥ ∴ AC ⊥面BGD .又易知EF //AC ,则EF ⊥面BGD .又因为EF ⊂面BEF ,所以平面BEF ⊥平面BGD . 【例3】如图,在正方体1111ABCD A B C D -中,E 是1CC 的中点,求证:1A BD BED ⊥平面平面.证明:连接AC ,交BD 于F ,连接1A F ,EF ,1A E ,11A C .由正方体1111ABCD A B C D -,易得11A D A B =,ED EB =,F 是BD 的中点, 所以1,A F BD EF BD ⊥⊥,得到1A FE ∠是二面角1A BD E --的平面角.设正方体1111ABCD A B C D -的棱长为2,则222221126A F A A AF =+=+=,2222213EF CE CF =+=+=, 2222211119A E A C CE =+=+=.∴ 22211A F EF A E +=,即1A F EF ⊥,所以1A BD BED ⊥平面平面.【例4】正三棱柱ABC —A 1B 1C 1中,AA 1=2AB ,D 、E 分别是侧棱BB 1、CC 1上的点,且EC =BC =2BD ,过A 、D 、E 作一截面,求:(1)截面与底面所成的角;(2)截面将三棱柱分成两部分的体积之比.解:(1)延长ED 交CB 延长线于F ,1//,,.1202DB EC BD EC FB BC AB ABF =∴==∠=︒又,∴ 30BAF BFA ∠=∠=︒,90FAC ∠=︒. ∵,AA AF AC AF '⊥⊥, ∴ ,A F A E E A C⊥∠为截面与底面所成二面角的平面角.在Rt △AEC 中,EC =AC ,故得∠EAC =45°.(2)设AB =a ,则3112,,,23A BCED BCED AA a BD a EC a V h S -'===∴=⋅=,2332,A B C ABC ABC ADE A B C V S AA a V '''''''-∆-'=⋅=⋅==. ∴ 3A D E A B C A B C D E V S '''--=. 【例5】如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱P A 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证:CD ⊥PD ; (2)求证:EF ∥平面P AD ;(3)当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ? 解:(1)证明:∵P A ⊥底面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD . 又∵ CD ⊥AD ,CD ⊥平面P AD . ∴CD ⊥PD .(2)证明:取CD 中点G ,连EG 、FG , ∵E 、F 分别是AB 、PC 的中点,∴EG ∥AD ,FG ∥PD . ∴平面EFG ∥平面P AD ,故EF ∥平面P AD .(3)当平面PCD 与平面ABCD 成45°角时,直线EF ⊥面PCD .证明:G 为CD 中点,则EG ⊥CD ,由(1)知FG ⊥CD ,故∠EGF 为平面PCD 与平面ABCD所成二面角E D C 1B 1A 1C BA的平面角.即∠EGF =45°,从而得∠ADP =45°,AD =AP .由Rt △P AE ≌Rt △CBE ,得PE =CE . 又F 是PC 的中点,∴EF ⊥PC ,由CD ⊥EG ,CD ⊥FG ,得CD ⊥平面EFG ,CD ⊥EF 即EF ⊥CD ,故EF ⊥平面PCD . 【例1】把直角三角板ABC 的直角边BC 放置于桌面,另一条直角边AC 与桌面所在的平面α垂直,a 是α内一条直线,若斜边AB 与a 垂直,则BC 是否与a 垂直? 解:【例2】如图,AB 是圆O 的直径,C 是圆周上一点,P A ⊥平面ABC .(1)求证:平面P AC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.解:(1)证明:∵C 是AB 为直径的圆O 的圆周上一点,AB 是圆O 的直径, ∴BC ⊥AC .又P A ⊥平面ABC ,BC ⊂平面ABC , ∴BC ⊥P A ,从而BC ⊥平面P AC .∵ BC ⊂平面PBC , ∴平面P AC ⊥平面PBC .(2)平面P AC ⊥平面ABCD ;平面P AC ⊥平面PBC ;平面P AD ⊥平面PBD ;平面P AB ⊥平面ABCD ;平面P AD ⊥平面ABCD .【例3】三棱锥P ABC -中,PA PB PC ==,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的外心.证明:连接OA 、OB 、OC ,∵ PO ⊥平面ABC , ∴ ,,PO OA PO OB PO OC ⊥⊥⊥.在△P AO 、△PBO 、△PCO 中,90POA POB POC ∠=∠=∠=︒, PA PB PC ==, PO 边公共.∴ POA POB POC ∆≅∆≅∆. ∴ OA OB OC ==, 所以,O 为底面△ABC 的外心.【例4】三棱锥P ABC -中,三个侧面与底面所成的二面角相等,PO ⊥平面ABC ,垂足为O ,求证:O 为底面△ABC 的内心.【证】作PD AB ⊥于D ,PE BC ⊥于E ,PF AC ⊥于F ,连接OD 、OE 、OF .∵ PO ⊥平面ABC ,∴ ,,PO OD PO OE PO OF ⊥⊥⊥,,,PO AB PO BC PO AC ⊥⊥⊥ .又 ∵ ,,PD AB PE BC PF AC ⊥⊥⊥,∴ ,,AB PDO BC PEO AC PFO ⊥⊥⊥平面平面平面.得 ,,OD AB OE BC OF AC ⊥⊥⊥,∴ ,,PDO PEO PFO ∠∠∠为三个侧面与底面所成的二面角的平面角. 即得PDO PEO PFO ∠=∠=∠,∵ PO 边公共, ∴ PDO PEO PFO ∆≅∠≅∠,得 OD OE OF ==, 又 ∵ ,,OD AB OE BC OF AC ⊥⊥⊥. ∴ O 为底面△ABC 的内心.【例5】在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1; (2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C ;(3)如果截面MBC 1⊥平面BB 1C 1C ,那么AM =MA 1吗?请你叙述判断理由. 解:(1)证明:∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .∵ 底面ABC ⊥平面BB 1C 1C , ∴AD ⊥侧面BB 1C 1C , ∴AD ⊥CC 1. (2)证明:延长B 1A 1与BM 交于N ,连结C 1N .∵AM =MA 1,∴NA 1=A 1B 1。
垂直线的判定条件和性质垂直线在几何学中是指两条线段或直线相互交叉成直角的情况。
在解决几何问题和计算中,判定两条线段或直线是否垂直是非常重要的,这需要我们掌握垂直线的判定条件和性质。
本文将探讨垂直线的判定条件以及其相关性质。
一、垂直线的判定条件1. 判定条件一:斜率之乘积为负一两条线段或直线垂直的一个充分必要条件是它们的斜率之乘积等于负一。
设直线L1的斜率为k1,直线L2的斜率为k2,那么L1与L2垂直的条件为k1 * k2 = -1。
2. 判定条件二:直角三角形的两条边斜率之积为负一当我们面对三角形ABC,其中AB与AC垂直时,可以利用直角三角形两条边斜率之积为负一的判定条件进行判定。
如果直线L1通过A与B两个点,直线L2通过A与C两个点,然后计算斜率k1与斜率k2,如果k1 * k2 = -1,则可得知AB与AC垂直。
二、垂直线的性质1. 性质一:垂直线的斜率性质在判定垂直线时,我们可以通过直线的斜率来判断。
如果一条直线的斜率为k,那么与其垂直的直线的斜率为-k的倒数(即-1/k)。
这个性质可以帮助我们在已知一条直线的斜率时,迅速判定与其垂直的直线的斜率。
2. 性质二:垂直线上两条线段的长度乘积为定值设直线L与坐标轴相交于A点,若点B, C分别在L上,则AB与AC的长度之积等于定值,即|AB| * |AC| = k。
这个性质表明,垂直线上两条线段的长度乘积是固定的,可以利用这个性质来解决一些相关的计算问题。
三、垂直线的应用举例1. 应用一:判定直线方程当我们给定一个直线的方程,例如y = 2x + 3,如何判定它是否垂直于另外一条直线?我们只需要计算给定直线的斜率,然后利用垂直线的性质一来判断。
在这个例子中,斜率为2的直线垂直于斜率为-1/2的直线。
2. 应用二:计算两条直线的交点坐标如果我们需要计算两条直线的交点坐标,并且已知其中一条直线为垂直线,可以利用垂直线的性质二来解决。
假设垂直线L与x轴交于点A,直线L与直线M交于点B,我们已知点A和线段AB的长度,通过计算可以得到交点B的坐标。