坐标系中的面积问题——铅垂法
- 格式:docx
- 大小:215.09 KB
- 文档页数:3
直角坐标系下三角形面积求法——水平宽铅垂高前一阶段我们探讨了一次函数和三角形的面积问题,后台有一些同仁提出了一些宝贵的看法,在此笔者表示感谢。
我们知道对于不规则三角形的面积肯定是用割补法,由此引申出一种水平宽铅垂高的做法,也就是铅垂法。
今天我们来深入地探讨一下铅垂法的做法依据。
我们先从三个顶点都确定的三角形来看。
如图,在直角坐标系中,△ABC三个顶点的坐标为A(1,1)、B (3,4)、C(5,2),试求△ABC的面积。
显然这个三角形属于我们说的所谓不规则三角形(三条边均不和坐标轴平行,且不在坐标轴上),所以我们的基本思路是割补法。
由于此题相对来讲比较简单,我就简单用图形罗列一下各种不同的解法。
方法一:方法二:方法三:方法三是过点B作AC的平行线将不规则的△ABC转化为规则的△ADC从而来求解的过程,其实我们还可以过点A作BC的平行线或者过点C作AB的平行线来进行转化。
鉴于这不是本文研究的重点,另外两种方法在此略过。
方法四:方法五:方法六:方法七:方法八:方法九:方法四、方法五都是在点B处处理,方法四是在点B处作y轴的平行线,方法五是在点B处作x轴的平行线;方法六、方法七都是在点A处处理,方法六是在点A处作y轴的平行线,方法七是在点A处作x轴的平行线;方法八、方法九都是在点C处处理,方法八是在点C处作y轴的平行线,方法九是在点C处作x轴的平行线。
我们再来研究这六个图:如果我们对这六种方法都进行运算、思考,我们就会发现△ABC的面积为图中两个红色线段(一横一竖)乘积的一半。
这就是所谓的铅垂法求面积。
那么如何构造这些线呢?我的看法是选三角形的两个顶点(比如A和B),将AB之间的横坐标体现的横着的线段找出来(图5中的AM),最后一个顶点C作竖着的直线交AB边于点D,此时竖着的线段就是CD,然后利用AM和CD乘积的一半来求解。
或者将AB之间的纵坐标体现的竖着的线段找出来(图6中的AM),过第三个顶点C 作横着的直线交AB边于点D,此时横着的线段就是CD,然后利用AM和CD乘积的一半来求解。
专题三。
(一)。
二次函数三角形之面积问题(铅垂法)专题三(一):二次函数三角形之面积问题(铅垂法)在处理坐标系中的面积问题时,我们应该充分利用横平竖直线段的长度和几何特征以及函数特征的互转。
处理面积问题的思路有公式法(对于规则图形)、割补法(通过分割求和和补形作差)和转化法(例如,同底等高)。
当三角形的三边都斜放在坐标系中时,我们通常使用铅垂法来表达其面积。
铅垂法的具体做法是,如果三角形是固定的,则可以从任意一点作铅垂;如果三角形是变化的,则可以从动点向另外两个点所在的定直线作铅垂。
利用铅垂法来表达三角形的面积,我们可以从动点向另外两个点所在的固定直线作铅垂。
将变化的竖直线段作为三角形的底,高即为两个定点的横坐标之差,然后结合三角形的面积公式来表达面积。
例如,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于点A,交x轴于点B和C(其中B在C的左侧)。
已知A点坐标为(0,3),点P是抛物线上的一个动点,且位于A和C两点之间。
当△PAC的面积最大时,求P的坐标和△PAC的最大面积。
例如2,一次函数y=1/x+2与y轴、x轴分别交于点A,B,抛物线y=-x^2+bx+c过A、B两点。
Q为直线AB下方的抛物线上一点,设点Q的横坐标为n,△QAB的面积为S,求出S与n之间的函数关系式并求出S的最大值。
通过以上例题,我们可以看出铅垂法求面积的应用范围和具体做法。
在考试中,我们可以根据题目要求灵活运用铅垂法来解决问题。
上一动点在第三象限,记为S。
若存在点M使得S△ACM=1/2S△ABC,则求此时点M的坐标。
改写:假设动点S位于第三象限,现在需要找到一个点M,使得S与三角形ACM的面积是S与三角形ABC面积的一半。
求点M的坐标。
已知直线y=1/2x+3与点B(6,3),直线x=22/3与y轴交于点C。
直线Mx+x-2与x轴交于点A。
求点M的坐标。
改写:已知直线y=1/2x+3与点B(6,3),直线x=22/3与y轴交于点C。
铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯=.【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++---如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1)二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=,点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x ∆∆=+=⋅=⨯⨯--++=-+,304-<,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-+3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<<,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A -,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =,点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB ∆∆∽,则14OQ OA OB OC ==即134OQ =,解得34OQ =,13(0,4Q ∴或23(0,)4Q -;②AOC BOQ ∆∆∽,则14OB OA OQ OC ==即314OQ =,解得12OQ =,3(0,12)Q ∴或4(0,12)Q -,综上所述,存在y 轴上的点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似,这样的点一共4个:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,故答案为:存在这样的点Q ,坐标分别是:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得22MQ NQ MN ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1)点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2)点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下:抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,22(|4|)42n n ∴-=+,2880n n ∴+-=,4n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,4-+或(1,4--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为31y =+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,231)P n n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n n '+,得出2733PP n n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出7(33C ,4)3-,设(3Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,(3B ,0),设直线AB 的解析式为y kx m =+,∴301k m m ⎧+=⎪⎨=⎪⎩,解得331k m ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为313y x =+,点F 43F ∴点纵坐标为343113=-,F ∴点的坐标为,1)3-,又点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,2PP n '∴=-+,22172222ABP S OB PP n n ∆'==-+=--+,∴当n =ABP ∆,此时P 47)12.(3)211y y x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或x =C ∴,43-,设Q ,)m ,①当AQ 为对角线时,7()3R m ∴+,R 在抛物线2(4y x =--+上,27(43m ∴+=--+,解得443m =-,443Q ∴-,37(3R -;②当AR 为对角线时,73R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=-+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l对称,若存在,求出点P 的坐标及直线l的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =-,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-=,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m2m =,31m =,41m =-,31m =,41m =-不合题意,舍去,当1m =1)2P -,线段PQ的中点为1(1)2-,∴112k +=-,∴1k =,∴直线l的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ的中点为1(2,1)-,∴112-=-,∴1k =,∴直线l的解析式为(1y x =+.综上,点P ,12-,直线l的解析式为(1y x =或点(P 1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。
铅垂线定理求三角形面积概述说明以及解释1. 引言1.1 概述铅垂线定理是三角形几何学中的重要概念,可以通过该定理求解三角形的面积。
在实际生活中,我们经常会遇到需要计算三角形面积的情况,比如建筑设计、地理测量等。
因此,了解和应用铅垂线定理对于准确计算三角形面积具有重要意义。
1.2 铅垂线定理简介铅垂线定理(又称高度定理)是指在一个三角形中,如果某一条边上的高(即垂直于底边且与底边相交于顶点)被引出,则该高可将底边分成两个互为共轭的部分,并且这两个部分上对应的底边长度与高成正比。
具体而言,假设在三角形ABC中,AB为底边,CD为通过顶点C且垂直于AB的高,则有CB/CA=CD/AB。
1.3 目的本文旨在全面介绍铅垂线定理以及其在求解三角形面积中的应用。
通过深入剖析铅垂线定理的原理和推导过程,我们将探讨它在规则和不规则三角形面积计算中的具体运用方法。
同时,我们还将探讨铅垂线定理在数学教学中的重要性,并提供一些简单易懂的教学方法和实例,帮助学生更好地理解和应用该定理。
最后,我们将总结本文的主旨和要点,并展望未来铅垂线定理在更多领域的应用潜力。
同时,我们也会指出当前研究中存在的局限性以及可能改进之处。
2. 铅垂线定理原理解析:2.1 定义与概念:铅垂线定理是指在一个平面内,对于任意给定的三角形ABC,如果通过顶点A 作BC边的铅垂线,则这条铅垂线可以将三角形分割为两个叠加的直角三角形ACD和ABD。
其中,AD被称为铅垂线,且满足AD ⊥BC。
铅垂线定理是三角形几何学中重要的基本原理之一。
2.2 三角形铅垂线定理述评:铅垂线定理具有广泛的应用价值和意义。
它为解决各类与三角形相关问题提供了有效的数学手段,尤其在求解三角形面积方面起到关键作用。
通过采用铅垂线定理,我们能够将一个不规则的三角形转化为两个直角三角形,并通过计算直角三角形的面积来得到整个三角形的面积,简化了计算过程。
2.3 铅垂线定理推导与证明:要推导和证明铅垂线定理,首先需要利用欧几里得几何体系中已知命题和性质进行推演。
二次函数的应用之铅锤法求面积铅锤法是一种通过二次函数的应用来求解面积的方法。
铅锤法常常用于计算不规则形状的面积,特别是那些无法通过几何方法直接求解的形状。
通过铅锤法,我们可以将复杂的形状分解为一系列简单的几何形状,然后通过计算这些简单形状的面积,最终得到整个形状的面积。
假设我们要计算一个不规则图形的面积,可以将其分解为若干个矩形、三角形或梯形等简单形状的组合。
首先,我们需要在图形上选取一条基准线,通常选择横坐标轴或纵坐标轴作为基准线。
然后,我们用铅锤垂直于基准线从图形上各点悬垂,使得铅锤与基准线之间的距离为x。
接下来,我们需要确定铅锤与图形的交点坐标。
对于每个交点,我们可以根据交点的横坐标和铅锤的高度来计算出相应的面积。
对于矩形,面积等于宽度乘以高度;对于三角形,面积等于底边乘以高度的一半;对于梯形,面积等于上底加下底的一半乘以高度。
通过计算每个交点处的面积,并将它们累加起来,我们就可以得到整个图形的面积。
当然,在实际计算过程中,我们可能需要使用数值积分等数学方法来求解面积的近似值。
铅锤法在实际应用中非常有用。
例如,在建筑设计中,我们常常需要计算不规则形状的地面面积,以确定所需的材料数量;在地理测量中,我们常常需要计算湖泊、岛屿等复杂形状的面积,以了解其地理特征。
通过铅锤法,我们可以准确地计算出这些形状的面积,并为相关工作提供准确的数据支持。
铅锤法是一种通过二次函数的应用来求解面积的方法。
通过将复杂的形状分解为简单形状,并计算各个形状的面积,我们可以准确地计算出整个形状的面积。
铅锤法在实际应用中具有重要的意义,可以用于建筑设计、地理测量等领域。
它是一种非常有用的工具,为各种工程和研究提供了准确的面积数据。
假期作业专题(一)一“铅垂法”求三角形的面积 姓名____________ 学号____________ 知识点:
我们把PM 称为“铅垂高”,A 、B 的两点的水平距离称为“水平宽”。
铅垂法求面积的公式为:
)(21A B ABP x x PM S -⋅⋅=∆ ))((21A B M P x x y y --=
练习1:如图,抛物线2232
--
=x ax y 与x 于A ,B 两点,且y 轴交于点C ,已知点B 的坐标为(4,0) (1)求抛物线的解析式;
(2)若M 是线段BC 下方的抛物线上一点,求MBC ∆的面积的最大值,并求出此时点M 的坐标。
练习2:如图,抛物线c bx x y ++-=2与x 轴交于A (1,0),B (-3,0)两点
(1)求抛物线的解析式;
(2)P 为抛物线第二象限内的一点,求PBC ∆的最大面积及此时点P 的坐标。
练习3:如图,已知抛物线223212-+=x x y 与x 轴交于A ,B 两点,与y 轴交于点C ,M 为抛物线的一动点,且在第三象限,若存在点M 使得ABC ACM S S ∆∆=21,求此时点M 的坐标。
练习4:如图,已知直线x y 2
1=
与抛物线b ax y +=2交于A (-4,-2),B (6,3)两点,抛物线与y 轴的交点为C ,在抛物线上存在点P 使得PAC ∆的面积是ABC ∆的面积的43,求此时点P 的坐标。
练习5:如图,二次函数23
7312+-=
x x y 的图象与x 轴交于点A ,B (A 在B 的左侧),与y 轴交于点C ,点M 为线段BC 的中点,点P 在抛物线上第一象限内一点,连接PM ,PC ,当PMC ∆的面积为227时,求此时点P 的坐标。
铅垂法求三角形的面积最值一、方法突破求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积. 这是在“补”,同样可以采用“割”:()111222ABCACDBCDSSSCD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离. 由题意得:AE +BF =6. 下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4, 将4代入直线AB 解析式得D 点纵坐标为2, 故D 点坐标为(4,2),CD =5,165152ABCS =⨯⨯=.【方法总结】 作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)利用公式求得三角形面积.二、典例精析例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5. (1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.例三、已知抛物线24y ax bx =+-经过点(2,0)A 、(4,0)B -,与y 轴交于点C . (1)求这条抛物线的解析式;(2)如图,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标.三、中考真题对决1.(2021•阜新)在平面直角坐标系中,抛物线23y ax bx =+-交x 轴于点(1,0)A -,(3,0)B ,过点B 的直线223y x =-交抛物线于点C . (1)求该抛物线的函数表达式;(2)若点P 是直线BC 下方抛物线上的一个动点(P 不与点B ,C 重合),求PBC ∆面积的最大值;2.(2021•淄博)如图,在平面直角坐标系中,抛物线211(0)222m m y x x m -=-+⋅+>与x 轴交于(1,0)A -,(,0)B m 两点,与y 轴交于点C ,连接BC . (1)若2OC OA =,求抛物线对应的函数表达式;(2)在(1)的条件下,点P 位于直线BC 上方的抛物线上,当PBC ∆面积最大时,求点P 的坐标;3.(2021•哈尔滨)在平面直角坐标系中,点O 为坐标系的原点,抛物线2y ax bx =+经过(10,0)A ,5(2B ,6)两点,直线24y x =-与x 轴交于点C ,与y 轴交于点D ,点P 为直线24y x =-上的一个动点,连接PA .(1)求抛物线的解析式;(2)如图1,当点P 在第一象限时,设点P 的横坐标为t ,APC ∆的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);4.(2021•赤峰)如图,抛物线2y x bx c =-++与x 轴交于(3,0)-、(1,0)B 两点,与y 轴交于点C ,对称轴l 与x 轴交于点F ,直线//m AC ,点E 是直线AC 上方抛物线上一动点,过点E 作EH m ⊥,垂足为H ,交AC 于点G ,连接AE 、EC 、CH 、AH . (1)抛物线的解析式为 223y x x =--+ ; (2)当四边形AHCE 面积最大时,求点E 的坐标;5.(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线22(0)y ax x c a =++≠与x 轴交于点A 、B ,与y 轴交于点C ,连接BC ,1OA =,对称轴为直线2x =,点D 为此抛物线的顶点. (1)求抛物线的解析式;(2)抛物线上C 、D 两点之间的距离是 22 ;(3)点E 是第一象限内抛物线上的动点,连接BE 和CE ,求BCE ∆面积的最大值;。
铅垂法求三角形面积二次函数三角形之面积问题(铅垂法)专题前请先思考以下问题:问题1:坐标系背景下问题的处理原则是什么?问题2:坐标系中处理面积问题的思路有哪些?问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?问题4:铅垂法的具体做法是什么?问题5:如何利用铅垂法表达三角形的面积?以下是问题及答案,请对比参考:问题1:坐标系背景下问题的处理原则是什么?答:充分利用横平竖直线段长,几何特征函数特征互转。
问题2:坐标系中处理面积问题的思路有哪些?答:公式法(规则图形);割补法(分割求和,补形作差);转化法(例:同底等高)。
问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?答:三边均是斜放置在坐标系中的三角形在表达面积时一般使用铅垂法。
问题4:铅垂法的具体做法是什么?答:若是固定的三角形,则可从任意一点作铅垂;若为变化的图形,则从动点向另外两点所在的定直线作铅垂。
问题5:如何利用铅垂法表达三角形的面积?答:从动点向另外两点所在的固定直线作铅垂,将变化的竖直线段作为三角形的底,则高就是两个定点的横坐标之差,然后结合三角形的面积公式表达。
例1:如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).点P是抛物线上的一个动点,且位于A,C两点之间,当△PAC的面积最大时,求P的坐标和△PAC的最大面积.解:试题难度:三颗星知识点:铅垂法求面积(铅垂线在三角形内部)例2:如图,一次函数122y x=+与y轴、x轴分别交于点A,B,抛物线2y x bx c=-++过A,B两点.Q为直线AB下方的抛物线上一点,设点Q的横坐标为n,△QAB的面积为S,求出S与n之间的函数关系式并求出S的最大值.解:试题难度:三颗星知识点:铅垂法求面积 (铅垂线在三角形外部)……………………………………………………………………………………………………… 总结反思篇:决胜中考:1.如图,在平面直角坐标系中,二次函数213222y x x =-++的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧).点P 是第二象限内抛物线上的点,△PAC 的面积为S ,设点P 的横坐标为m ,求S 与m 之间的函数关系式.2. 如图,已知抛物线213222y x x =+-与x 轴交于A ,B 两点,与y 轴交于点C .M 为抛物线上一动点,且在第三象限,若存在点M 使得12ACM ABC S S ∆∆=,求此时点M 的坐标.3.如图,已知直线12y x =与抛物线2(0)y ax b a =+≠交于A (-4,-2),B (6,3)两点,抛物线与y 轴的交点为C .在抛物线上存在点P 使得△PAC 的面积是△ABC 面积的34,求时点P 的坐标.。
二次函数三角形之面积问题(铅垂法)专题前请先思考以下问题:问题1:坐标系背景下问题的处理原则是什么?问题2:坐标系中处理面积问题的思路有哪些?问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?问题4:铅垂法的具体做法是什么?问题5:如何利用铅垂法表达三角形的面积?以下是问题及答案,请对比参考:问题1:坐标系背景下问题的处理原则是什么?答:充分利用横平竖直线段长,几何特征函数特征互转。
问题2:坐标系中处理面积问题的思路有哪些?答:公式法(规则图形);割补法(分割求和,补形作差);转化法(例:同底等高)。
问题3:具有什么样特征的三角形在表达面积时会使用铅垂法?答:三边均是斜放置在坐标系中的三角形在表达面积时一般使用铅垂法。
问题4:铅垂法的具体做法是什么?答:若是固定的三角形,则可从任意一点作铅垂;若为变化的图形,则从动点向另外两点所在的定直线作铅垂。
问题5:如何利用铅垂法表达三角形的面积?答:从动点向另外两点所在的固定直线作铅垂,将变化的竖直线段作为三角形的底,则高就是两个定点的横坐标之差,然后结合三角形的面积公式表达。
例1:如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).点P是抛物线上的一个动点,且位于A,C两点之间,当△PAC的面积最大时,求P的坐标和△PAC的最大面积.解:试题难度:三颗星知识点:铅垂法求面积(铅垂线在三角形内部)例2:如图,一次函数122y x=+与y轴、x轴分别交于点A,B,抛物线2y x bx c=-++过A,B两点.Q为直线AB下方的抛物线上一点,设点Q的横坐标为n,△QAB的面积为S,求出S与n之间的函数关系式并求出S的最大值. 解:试题难度:三颗星知识点:铅垂法求面积 (铅垂线在三角形外部)……………………………………………………………………………………………………… 总结反思篇:决胜中考:1.如图,在平面直角坐标系中,二次函数213222y x x =-++的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧).点P 是第二象限内抛物线上的点,△PAC的面积为S ,设点P 的横坐标为m ,求S 与m 之间的函数关系式.2. 如图,已知抛物线213222y x x =+-与x 轴交于A ,B 两点,与y 轴交于点C .M 为抛物线上一动点,且在第三象限,若存在点M使得12ACM ABCS S∆∆=,求此时点M的坐标.3.如图,已知直线12y x=与抛物线2(0)y ax b a=+≠交于A(-4,-2),B(6,3)两点,抛物线与y轴的交点为C.在抛物线上存在点P使得△PAC的面积是△ABC面积的34,求时点P的坐标.。
铅垂定理求三角形面积铅垂定理求三角形面积,这听起来就像一门深奥的数学课,实际上,咱们可以把它聊得轻松有趣。
想象一下,三角形就像一个风筝,飞在蓝天上,下面是大地,风儿轻轻吹动。
这时候,铅垂线就像那根系着风筝的线,稳稳地把风筝拉住,确保它不飞到哪里去。
好啦,今天咱们就来一起看看,如何用铅垂定理来算三角形的面积。
说到三角形面积,很多朋友可能会觉得有点头疼。
哎呀,别担心,咱们不是要参加数学竞赛,而是要让这事儿变得简单明了。
三角形的面积公式其实很简单,就是底乘高再除以二。
这个底和高就像咱们生活中的两个好朋友,底就是那稳稳的根基,高就是那高高在上的梦想。
把它们结合在一起,就能得到一个完美的结果。
想象一下,你在户外野餐,看到一块完美的草地,那里有一个漂亮的三角形区域。
你想给朋友们铺上野餐垫,享受美好的时光。
要知道,这个区域的面积可是关乎到大家能否舒舒服服地坐下来的关键。
你得量量这个三角形的底。
嘿,别小看这一步!量底的时候可得仔细,心里默默算算,底的长度是多少?找出高,也就是从底到对角的那根铅垂线。
这个高可能是在你心里画出的,也可能是在实际的地面上测量出来的。
高和底结合,再乘以二,哇,瞬间得到面积,大家都能尽情享受美味的食物了。
不过,别以为仅仅是这样简单。
铅垂定理在这里可不是简单的数数。
它的奥妙在于,能帮助我们准确找到高,而这个高的概念就像是生活中的某些事情,往往看似简单,实际上却有很多小细节要注意。
想象一下,如果你的风筝线没系好,风筝可能会飞走。
同样的,如果你在计算面积的时候,忽视了高,那么结果可就大大不如意了。
咱们可以再举个例子,想象一下,你正在准备一场派对,邀请了很多小伙伴。
为了确保每个人都有足够的空间,你得先测量一下场地,确保三角形的面积足够大。
找好底之后,再从底的两端直线测量到对边,这样就能找到理想的高。
然后,像厨师调配食材一样,把底、高都放进去,调出那个完美的三角形面积,让每个人都坐得舒舒服服。
这样一来,大家就可以开开心心地聊天,享受派对的欢乐气氛。
坐标系中的面积问题——铅垂法
【阅读学习】
如下是小明遇到的一个题目,在平面直角坐标系中,求斜放置的△P AB 的面积. 借助面积处理思路(公式,割补,转化)和坐标系问题处理原则(横平竖直的线等),小明是这样思考的:
1. 过点P 作PM ∥y 轴交AB 于一点M ,如图所示, 此时△P AB 被分割成△PMA 和△PMB ,
PAB PMA PMB S S S =+△△△
2. 表达△PMA 和△PMB 面积,要利用好坐标,考虑 把PM 当作公共的底(竖直放置,易表达), 分别过点A ,B 作PM 的垂线,如图所示,
此时1211
22
PMA PMB S PM h S PM h =⋅⋅=⋅⋅△△,
3. 将目标表达并初步化简
121211
221
()2
PAB PMA PMB
S S S PM h PM h PM h h =+=⋅⋅+⋅⋅=⋅⋅+△△△ 4. 注意到h 1,h 2是两条水平的线,可以拼接在一起,如图所示,此时h 1+h 2即是A ,B 的水平距离,即h 1+h 2=x B -x A ,代入上一步公式
121211
22
1
()21
()2
PAB PMA PMB
B A S S S PM h PM h PM h h PM x x =+=⋅⋅+⋅⋅=⋅⋅+=⋅⋅-△△△
那么,小明就找到了一个求坐标系下斜放置的三角形的面积公式. 铅垂法求坐标系下斜放置的三角形面积的操作步骤: ①过一点作铅垂线(平行于y 轴的线); ②达横平竖直的线段长; ③入公式表达面积.
巩固练习
1.如图,点A是直线y=2x上一点,横坐标为3,点B和点C在直线
1
2
y x
上,
且横坐标分别为2,6,连接AB,AC,则S
△ABC
=________.
2.如图,直线y=-x+b上两点A(4,-1),B(m,4),点P为(6,2),则S△P AB=____.
3.如图,点A(1,4),B(-2,3),C(2,-1),则S△ABC=
________.
4.如图,在平面直角坐标系中,已知A(2,4),B(6,
OABC的面积为___________.
小结:当要表达的斜放置的三角形的三个顶点都是定点时,可以过任意顶点作铅垂线,但具体做题时,需要结合图形特征(比如已知的分割线、表达式,点的特殊位置等),选择合适的点作铅垂线.
5.如图,已知点A(2,1),点B(8,4),点C是直线AB上方任意一点,且△ABC
的面积为36,若C点坐标为(m,2m-3),则m=________.
6.如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=kx+3交于点A,
两直线分别与x轴交于点B和点C(3,0),点D是直线AC上一动点,且S△ABD=3,则点D的坐标为_________.
小结:当要表达的斜放置的三角形中有动点时,选择从动点作铅垂线,由于另外两点所在直线是固定的,交点表达起来较为简单.。