杨氏弹性模量的测量
- 格式:doc
- 大小:115.00 KB
- 文档页数:6
杨氏模量的测量方法
杨氏模量,也称作弹性模量或静态弹性模量,是材料弹性变形的比例系数。
它指材料
在受到拉力或压力时,单位面积的应变量与该拉力或压力的比值。
杨氏模量的测量对于材
料的研究以及弹性力学理论的理解至关重要。
下面将介绍几种测量杨氏模量的方法。
一、拉伸方法
拉伸测试是测量杨氏模量的常用方法之一。
该测试需要使用试样机,常用的有万能试
验机和压力传感器等设备。
在测试过程中,材料试样在两个夹紧装置之间受力,一端固定,另一端施以拉力。
拉伸过程中,测量应变和应力,该过程中应变为线性关系,因此可以根
据弹性线来计算杨氏模量。
二、压缩法
另一种测量杨氏模量的方法是压缩法。
该方法的基本原理是在平行靠近的两个表面之
间应用压力,在材料中引起垂直于两个表面之间的应变。
试验时,当应变在弹性范围内时,应力随着应变的逐渐增大,并且这种关系是线性的。
可以根据测得的应力和应变值,用线
性拟合来获得杨氏模量。
三、扭转法
扭转法是另一种广泛使用的测量杨氏模量的方法。
在该方法中,试样被固定在一个端点,另一个端点受到了扭矩的作用。
随着扭矩的逐渐增大,材料发生弹性变形,并且该部
分变形与应力是成比例的。
通过测量材料的应变和应力,可以计算出杨氏模量。
值得注意的是,以上三种测量方法在测试过程中,需要严格控制测试环境,确保测试
时的误差最小,从而减小结果的偏差。
在采用这些方法进行测试时,还需要对试样的准备、尺寸和形状等方面的要求进行详细的了解并正确地操作机器。
2.2 杨氏弹性模量的测量预习题∆的数值很小,我们所做的实验中采用什么方法来测量的?1、由于L2、本实验测量杨氏弹性模量的方法是什么?3、用望远镜读数时,叉丝与刻度像之间不应相对移动。
如果发现有视差,应如何操作?4、用望远镜读数时,发现分划板上的十字叉丝很模糊,应如何操作?5、如何增大光杠杆的放大倍数以及提高光杠杆测量微小长度变化量的灵敏度?6、试推导出光杠杆测量微小长度变化的公式?7、请画出光杠杆光路图说明光杠杆的结构和工作原理。
8、你能否根据实验所测得的数据,计算出所用光杠杆的放大倍数,请写出公式。
∆所需要测量的物理量。
9、测量钢丝的杨氏弹性模量实验中计算L10、杨氏弹性模量实验测量的数据我们采用逐差法处理,使用逐差法的条件是什么?千分尺仪器误差mm 004.0=∆仪d 千分尺零点读数=0d ________mmL=________±__________m D=________±__________m R=________±__________m教师签字1、 通过实验得到钢丝伸长记录表1表1 某位同学测量杨氏模量实验的数据每块砝码的质量为(360±1)克,请用逐差法求sF ∆的值。
2、某位同学用逐差法求出()()()()[]()237261541007052141-⨯±=-+-+-+-=∆..s s s s s s s s s 米,每块砝码的质量为(360±1)克。
他计算F 的式子为23105218910360--⨯⨯⨯..,请问是否正确?说明理由。
3、光杠杆有什么优点?怎样提高光杠杆测量微小长度变化的灵敏度?4、由E 的相对误差公式分析进一步提高杨氏模量测量精度的途径是什么?。
动态法测量杨氏弹性模量郑新飞杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
杨氏模量的测量是物理学基本测量之一,属于力学的范围。
根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。
一、实验目的1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器1、传感器I(激振):把电信号转变成机械振动。
2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。
3、传感器II (拾振):机械振动又转变成电信号。
4、示波器:观察传感器II 转化的电信号大小。
三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为2436067.1f dm l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。
四、实验内容1、测定试样的长度l 、直径d 和质量m 。
每个物理量各测六次,列表记录。
2、在室温下不锈钢和铜的杨氏模量分别为211102m N ⨯和211102.1m N ⨯,先由公式(1)估算出共振频率f ,以便寻找共振点。
3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。
4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。
实验七杨氏弹性模量的测定测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。
拉伸法是最常用的方法之一。
但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。
另外,此法还不适用于脆性材料的测量。
本实验借助于新颖的动态杨氏模量测量仪用振动法测量材料的杨氏模量。
该方法可弥补其不足,同时还可扩大学生在物体机械振动方面的知识面,不失为一种非常有用和很有特点的测量方法。
【实验目的】1.了解振动法测量材料杨氏模量的原理;2.学会用作图外推求值法测量振动体基频共振频率和杨氏模量;3. 测量试件机械振动的本征值4.观察铝平板的振型;5.通过实验,逐步提高综合运用各种测量仪器的能力。
【实验仪器】DY-D99型多用途动态杨氏模量测量仪、YXY-3D型音频信号源、示波器(Y轴灵敏度5-10m V)、毫米刻度钢皮尺(250mm长)、0.02mm精度游标卡尺、物理天平(精度0.05克)。
DY-D99型多功能动态杨氏模量测量仪简介图3 DY-D99型多功能动态杨氏模量测量仪1电动式激振器、6电动式拾振器、2试件(圆棒)、17试件(金属铝板)、3、5刀口、26导轨标尺、9标尺支架、25试件压板、24压板固定螺钉、10接线箱、11试件选择旋钮、12输入接口、13输出接口、22声整流罩、19发声元件、18小导轨、20声激振器固定螺钉、14-16水平调节螺钉、4刻度指示板、8备用试件安放支架、7试件限位装置、23底板该仪器如图3所示。
它由棒材试件杨氏模量定量测量装置和板材试件振型演示观察装置两部分组成。
两部分用接线箱连接和转换。
前一装置包含两个换能器(电动式换能器)、导轨标尺及其支架。
其中一个电动式换能器用作激振器,在音频信号发生器输出的音频正弦信号电压的作用下,作机械振动,进而激励试件作机械振动。
另一个电动式换能器当作拾振器,将由试件传递过来的机械振动信号转变为电信号,并输到示波器观察波形。
当音频信号发生器的信号频率调到与试件的固有频率相同时,试件产生共振,示波器显示的波形幅度达到最大。
实验二杨氏弹性模量的测定杨氏弹性模量是描述材料形变能力的重要物理量,是选定机械零件材料的依据之一,是工程技术没计中常用的参数.杨氏模量的测量方法很多,本实验采用光杠杆测量金属丝的杨氏弹性模量。
测量中需综合运用多种测量长度的量具,确保一定的精确度要求,学习从误差分析的角度,选用最合适的量具,并要求用不确定度表示完整的测量结果。
用一般测量长度的工具不易精确测量长度的微小变化,也难保证其精度要求。
光杠杆是一种应用光放大原理测量被测物微小长度变化的装置,它的特点是直观、简便、精度高。
目前光杠杆原理已被广泛地应用于其他测量技术中,光杠杆装置还被许多高灵敏度的测量仪器(如灵敏电流计、冲击电流计和光点检流计等)用来显示微小角度的变化。
【实验目的】1.学会用拉伸法测定杨氏弹性模量;2.掌握光杠杆测量微小长度变化的原理和力法;3.学会用逐差法处理实验数据,学会用不确定度的计算方法,结果的正确表达;【实验仪器】杨氏模量测定仪、千分尺、游标卡尺、钢卷尺等【实验原理】在外力作用下,固体所发生的形状变化,称为形变。
形变可分为弹性形变与塑性形变两大类。
外力撤除后物体能完全恢复原状的形变,称为弹性形变,如外力撤除后物体不能完全恢复原状,而留下剩余形变,就称为塑性形变。
本实验只研究弹性形变,因此,应当控制外力的大小,以保证外力撤除后物体能恢复原状。
一根均匀的金属丝(或棒),长为L ,截面面积为S ,在受到沿长度方向的外力F 的作用时发生形变,伸长L ∆。
根据胡克定律,在弹性限度内,其应力F S 与应变L L ∆成正比,即LL E S F ∆=(1)这里的E 称为该金属丝的杨氏模量。
它只决定于材料的性质,而与其长度L 、截面面积S 无关。
它的单位为2N/m 。
设金属丝的直径为d ,则截面面积214S d π=,其杨氏模量为24FL E d Lπ=∆(2)这里F 、L 、d 可以直接测得,L ∆采用光杠杆法测量。
光杠杆和标尺是光杠杆法测量L ∆的主要仪器,光杠杆是由一块直立的平面镜装在三足支架的一端构成,其放置方法如下图所示。
一、引言固体材料受外力作用时必然发生形变,其内部胁强(单位面积上受力大小)和胁变(即相对形变)的比值称为杨氏弹性模量,这是衡量固体材料受力后形变大小的参数之一,是设计各种工程结构时选用材料的主要依据之一。
本实验需要掌握伸长法(读数显微镜配以CCD成象系统)和弯曲法两种测量方法,其中涉及了卷尺、千分尺、游标卡尺和读数显微镜的正确使用,并且综合了逐差法、线性拟合法来进行数据处理及不确定度的计算,是一个经典的力学物理实验。
二、实验原理1.伸长法:胡克定律指出,在弹性限度内,弹性体的应力和应变成正比。
设有一根长为L 横截面积为S的钢丝,在外力F作用下伸长了δ,则F/S=Eδ/L (1) ; 式中的比例系数E称为杨氏模量,单位为N.m-2。
设钢丝直径为d,则,将此代入上式并整理后得出E=4FL/(πd2δ) (2);上式表明,对于长度L、直径d和所加外力F相同的情况下,杨氏模量大的金属丝的伸长量δ较小,而杨氏模量小的伸长量较大。
因而,杨氏模量表达了材料抵抗外力产生拉伸(或压缩)形变的能力。
根据式(2)测杨氏模量时,伸长量δ比较小不易测准,本实验采用了读数显微镜配以CCD成象系统测量钢丝微小的伸长量。
呈像系统总的放大率为62.5倍。
2.弯曲法:在衡量歪曲时杨氏模量的表示公式为:E=(d3mg)/(4a3bΔZ); 其中d为两刀口间的距离,a为梁的厚度,b为梁的宽度,m为加挂砝码的质量,ΔZ为梁中心由于外力作用而下降的作用,g为当地的重力加速度。
实验时我们利用读数显微镜来测量梁中心下降的距离。
(关于歪曲法杨氏模量的推导附于报告最后)三、实验器材及实验过程实验器材:伸长法:千分尺、卷尺、金属丝支架(编号:20011664)、读数显微镜及CCD呈像显示系统(编号:D2*******);歪曲法:FD-HY-I杨氏模量实验仪(编号:20036985),千分尺,游标卡尺,不锈钢直尺,黄铜片,钢片等;DC12V监视器CCD MS测试样品H2H1伸长法实验图像实验过程:(由于具体的在预习报告中以写明,故在此简略些)实验1:1)调节金属丝铅直,正确调节显微物镜的目镜、物镜及摄像机镜头后在监视器屏带上看到清晰的图像。
实验 1 拉伸法测量杨氏模量杨氏弹性模量 (以下简称杨氏模量 )是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。
其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。
【实验目的】1. 学习用静态拉伸法测量金属丝的杨氏模量。
2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。
3. 学习用逐差法和作图法处理数据。
4. 掌握不确定度的评定方法。
【仪器用具】杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜【实验原理】1. 杨氏模量的定义本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝 )仅受轴向外力作用后F 与应变L的伸长或缩短。
按照胡克定律:在弹性限度内,弹性体的应力成正比。
SL设有一根原长为l ,横截面积为 S 的金属丝(或金属棒),在外力 F 的作用下伸长了L ,则根据胡克定律有F E( L)( 1-1)SL式中的比例系数 E 称为杨氏模量,单位为 Pa (或 N · m –2)。
实验证明,杨氏模量E 与外力 F 、金属丝的长度L 、横截面积 S 的大小无关,它只与制成金属丝的材料有关。
若金属丝的直径为d ,则 S1 d 2,代入( 1-1)式中可得 44FLE( 1-2)d 2 L( 1-2)式表明,在长度、直径和所加外力相同的情况下, 杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。
因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。
实验中,测量出F、 L、 d、 L 值就可以计算出金属丝的杨氏模量 E 。
2.静态拉伸法的测量方法测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝 F ,测出金属丝的伸长量L ,即可求出 E 。
杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。
实验名称:杨氏弹性模量的测定【实验目的】1、掌握伸长法测量金属丝杨氏模量的原理和方法;2、掌握用光杠杆测量长度微小变化量的原理和方法;3、学习光杠杆和尺度望远镜的调节与使用;4、学习处理数据的方法。
【实验仪器】杨氏模量测定仪 光杠杆 尺度显微镜 钢卷尺 游标卡尺 螺旋测微计 砝码 金属丝【实验原理】1、杨氏模量设一粗细均匀的金属丝长为l ,截面积为S ,上端固定,下端悬挂砝码,金属丝在外力F 的作用下发生形变,伸长l δ。
根据胡克定律,在弹性限度内,金属丝的胁强F S和产生的胁变lLδ成正比。
即F lE S l δ= (9-1) 或 FlES lδ=(9-2) 式中比例系数E 称为杨氏弹性模量。
在国际单位制中,杨氏弹性模量的单位为牛每平方米,记为2-⋅m N 。
在实验中测量钢丝的杨氏模量,其截面为圆形,其直径为d 时,相应的截面积4/2d S π=,l δ是较大长度的微小伸长量,无法用一般的长度测量仪器测量,因此实验中用光杠杆法进行测量,测量公式 0122m A A d l d δ-=于是可得实验中的杨氏模量测量公式: 22018m mgld E d A A d π=-令0m A A K m-=,K 为砝码质量改变一个单位时,望远镜中所见尺的读数的变化量,则2218gld E d Kd π=2、光杠杆实验中l δ是一微小变化量,变化在mm 210-数量级。
因此实验设计的关键是寻找测量微小变化量的方法和装置,这里我们采用了光路放大方法——光杠杆来实现。
设未加砝码时,从望远镜中读得标尺读数记为0A ,当增加砝码时, 钢丝伸长量为l δ,光杠杆一端随圆柱体夹头一起下降,光杠杆的转角θ,于是光杠杆镜面法线轴转动θ角。
根据反射定律,平面镜法线转动θ角,反射线将转过θ2,此时从望远镜中读得的标尺读数为m A 。
因为l δ为一微小量,所以θ也很小,近似有θθtg ≈和θθ22tg ≈。
于是由三角函数关系可得:122m A A ld d δ-=由于2d 远大于1d ,则0m A A -必然远大于l δ。
实验五 金属杨氏弹性模量的测量一、实验目的1.测定金属丝的杨氏模量并理解测量原理。
2.掌握测量长度微小变化的光杠杆法。
3.学习用逐差法和作图法处理数据。
二、实验仪器伸长法杨氏模量测定仪一套(包括支架,反光镜,尺读望远镜,砝码),测微螺旋计等。
三、实验原理有一均匀的金属丝(或棒),长为L ,横截面积为S ,丝之一端固定,另一端施以拉力P ,结果伸长了∆L 。
若用相对伸长∆L /L 表示其形变,则根据虎克定律:在弹性限度内,伸长形变与胁强P /S 成正比即S P E L L ⨯=∆1 或LS PLE ∆= (5-1) 式中E 为金属丝的杨氏模量,它表征材料的强度性质,只与材料的质料有关,而与材料的形状大小无关。
并且在数值上,E 等于相对伸长为1时的胁强,所以它的单位与胁强的单位相同。
光杠杆由平面反射镜、前足、后足组成,如图5-1所示。
用光杠杆法测量∆L :实验装置如图5-2,光杠杆是在由一刀片和与刀片垂直的金属杆(后足)组成的成“⊥”形的底座上直立放置一平面镜而构成的,(有的光杠杆将刀片换成两个“足”,所以光杠杆也称为三足镜),使用时刀片(或前足)放在平台上,后足放在平台小园孔中用于夹紧金属丝的夹头上,若系统已调节到最佳状态,通过望远镜可以从小镜中看到附在望远镜架上的标尺的像,利用望远镜内的分划板上的叉丝a 、b (或b 、c )在标尺像上的读数之差再乘100,即得标尺到平面镜镜面的距离D ,如图中园内部分所示。
当金属丝的初负荷(为了拉直金属丝所加的砝码重量)为P 0时,叉丝b (或a 、c )在标尺上的示数为x 0,若增加一重量P ,设长为L 的金属丝伸长了∆L ,光杠杆后足就下降了∆L 见图5-2,则平面镜以刀口线为轴旋转了φ角。
由光学的反射定律可知,入射线与反射线之间的夹角为2φ,于是叉丝b (或a 、c )移到了标尺上的x 处,当φ角甚小时,根据图中的几何关系有d L ϕ=∆ Dx x 02-=ϕ Dx x d L 2)(0-=∆∴ (5-2)式中d 为光杠杆后足足尖到刀口线的垂直距离,D 为平面镜到标尺的距离。
拉伸长法测定金属丝的杨氏弹性模量[实验目的]1、弹性限度内,验证虎克定律,学习用静态拉伸法测定金属丝的杨氏弹性模量。
2、掌握光杠杆法测定长度微小变化的原理,并掌握其使用,学会望远镜尺组的使用。
3、学会用逐差法处理数据。
[实验仪器与器材]1、弹性模量测定仪(包括主体支架、光杠杆、望远镜尺组)2、待测金属丝3、螺旋测微器、钢卷尺、直尺4、砝码组5、水准仪 [实验原理]测定某金属的杨氏弹性模量,一般采用弹性限度内的拉伸试验。
取一粗细均匀的金属丝,长为L ,截面积为42d S π=,d 为截面直径,将其上端固定,下端悬挂质量为m 的砝码,测金属丝内产生单位面积的强力,即应力S F =δ,单位长度的伸长应变LL∆=ε,虎克定理指出,在弹性限度内,应力与应变成正比,即LLy S F ∆= (5-1-1) y 称为金属材料杨氏弹性模量,它完全由材料的性质所决定。
将(5-1-1)式改写成 ySFLL =∆ (5-1-2) 为了验证应力和应变的线性关系,一般均采用增量法,即 分成几次来逐渐增加负载,而不是一次就将载荷加至最终值, 如多次增加相同的拉力F ,相应地测出伸长增加量L ∆也大致 相等。
这样就验证了虎克 定律的正确性。
将(5-1-1)式改写成为 Ld FLL S FL y ∆=∆=24π (5-1-3) 根据(5-1-3)式测出等式右边各量,杨氏弹性模量便可求得。
F (砝码重量)、金属丝原长L 和截面积为S 都可用一般方法测 定。
唯有伸长量L ∆,由于甚微,为了测量准确起见,需用特别的方法测定它,本实验采用光杠杆法测定之。
1、 杨氏模量仪如图5-1所示,三角底座上装有两根立柱和调整螺丝。
欲使立柱铅直,可调节调整螺丝,并由立柱下端的水平仪来判断。
待测金属丝的上端紧固于主体支架的上夹具A 上,其下端穿过中部平台C 中的下夹具B ,施紧下夹具,金属丝即被夹住。
下夹具下悬挂砝码,当金属丝伸长或缩短时,下夹具也随之上下移动。
杨氏弹性模量的测定实验目的1.学会用伸长法测量金属丝的杨氏模量。
2.掌握用光杠杆法测量微小伸长量的原理。
3.学会用逐差法处理实验数据。
实验仪器杨氏弹性模量测量仪(包括尺读望远镜,测量架,光杠杆,标尺,砝码),钢卷尺,螺旋测微器,钢丝。
仪器描述测量杨氏模量的实验装置如图3-1图3-11.标尺;2.俯仰螺丝;3.目镜;4.调焦手轮;5.内调焦望远镜;6.准星;7.锁紧手轮;8.钢丝上夹头;9.钢丝;10.光杠杆;11.砝码;12.调整螺钉;13.钢丝下夹头;14.工作平台被测金属丝上端固定在支架顶部的夹头上,下端连接砝码托,中间固定在一小圆柱形夹头上,此圆柱形夹头放在支架工作平台的圆孔中,并可在圆孔中上下自由滑动。
一个直立的平面镜装在三角形支架上成为光杠杆,光杠杆的3个足尖成等腰三角形。
使用时两前足尖放在支架中间平台的凹槽内,后足尖放在夹金属丝的圆柱形夹头上。
在反射镜前1.5~2m左右放有另一支架,其上安有望远镜和竖直标尺,使通过调节,从望远镜中能同时看到望远镜的基准叉丝线和标尺的清晰像,从而可读出叉丝线在标尺像上的位置。
实验原理材料受力后发生形变。
在弹性限度内,材料的胁强与胁变(即相对形变)之比为一常数,称为弹性模量。
条形物体(如钢丝)沿纵向的弹性模量称为杨氏模量。
测量杨氏模量有拉伸法、梁的弯曲法、振动法、内耗法等等,本实验采用拉伸法测量杨氏模量。
设一粗细均匀的金属丝长度为L,横截面积为S将其上端固定,下端悬挂砝码,于是金属丝受砝码重力F的作用而发生形变,设其伸长量为ΔL,比值F/S称为应力(金属丝截面/L称为应变(金属丝单位长度的相对形变),在一定上单位面积所受的作用力),而比值L的弹性范围内,物体所受的应力与应变成正比,称为胡克定律,即L L ESF ∆= (3-1) 其比例系数L L SF E //∆=(3-2)E 称为杨氏弹性模量,简称杨氏模量,式中各量的单位均用SI 单位时,E 的单位为Pa ,(1Pa =1N/m 2)。
实验一 杨氏弹性模量的测定【实验目的】:1.学会一种测定杨氏弹性模量的方法; 2.验证胡克定律;3.掌握光杠杆、镜尺法测长度微小变化的原理,学会望远镜尺组的使用;4.巩固用逐差法和图解法处理数据。
【实验仪器和用具】:杨氏弹性模量仪、光杠杆、望远镜及标尺、砝码及码钩、螺旋测微器、卷尺、钢尺。
【实验原理】:固体在外力作用下都将产生形变,若在外力作用停止时,形变也随之消失,这种形变称为弹性形变,若外力作用停止,它所引起的形变不完全消失,这种形变称为剩余形变,此时我们说外力超过了物体的弹性限度。
胡克定律指出:在物体弹性限度以内,应力和应变成正比。
即应力=E ×应变比例系数E 称为弹性模量,它完全由材料的性质决定。
形变的最简单形式是伸长形变。
一粗细均匀的金属,丝,长为L ,横截面积为S ,将其上端固定,下端挂质量为m 的砝码,则金属丝内应力F s σ=,在应力作用下,伸长L ∆,相对伸长(应变)L L ε∆=。
根据胡克定律,在弹性限度以内应力与应变成正比,即F LEs L∆= 所以F LE S L =⋅∆ (1) 根据(1)式,只要测出等式右边各量,杨氏弹性模量便可求得。
各量中l 可由米尺量出,s 可用螺旋测微器测出直径d 后算出,F 可由外加砝码直接读出,唯有伸长量l ∆,由于甚微,不能直接测得。
为了测量准确起见,需要用特别的方法量度它。
在这个实验中采用光杠杆法测量伸长量L ∆。
图1为杨氏模量测定仪外观,待测钢丝的上端由立柱顶横梁上的螺旋夹住,再经上端夹具夹紧,下端穿过中部平台夹具夹紧,夹具下悬挂砝码,当钢丝伸长或缩短时,夹具也随之上下移动。
光杠杆由一平面镜M 与前后脚构成,它的后足搁在夹具上,两前足(其连线作为转动轴)搁在固定平台的横槽里,当钢丝伸长时,夹具下降,光杠杆镜面将随着向上仰一微小角度,光杠杆镜面转过的微小角度可用望远镜与直尺来测量。
如图2所示,设钢丝未伸长时,从望远镜看镜反射的直尺上的刻度为X 1,当钢伸长ΔL ,光杠镜后足向下移动,光杠杆转到Mˊ位置,即转过φ角,这时望远镜的叉丝对准的是直尺上刻度X 2,刻度的变化量为21h X X ∆=-图1 杨氏模量测定仪由于平面镜转过φ角,所以入射光线与反射光线的夹角(也即Δh 所对的角)为2φ。
杨氏模量的测量【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S )。
应变:是指在外力作用下的相对形变(相对伸长∆L/L )它反映了物体形变的大小。
用公式表达为:24F L FL Y S L d L π=⋅=∆∆ (1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F 的拉伸下,钢丝的伸长量∆L 是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。
标尺通过平面镜反射后,在望远镜中呈像。
实验二杨氏弹性模量的测定实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏弹性模量。
2、掌握光杠杆测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
对于一根粗细均匀的金属丝,在其长度方向上施加拉力 F,金属丝会发生伸长,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力与应变成正比,即:\F = Y\frac{\Delta L}{L}\其中,Y 为杨氏弹性模量,L 为金属丝的原长。
2、光杠杆原理光杠杆是一个带有三个尖足的平面镜,前两尖足放在一个平台上,后尖足置于一个可移动的小立柱上。
当金属丝发生微小伸长时,光杠杆的后尖足会随之移动,从而带动平面镜转动一个微小角度θ。
设平面镜到标尺的距离为D,光杠杆的长臂长度为b,金属丝的伸长量为ΔL,则有:\\tan\theta \approx \theta =\frac{\Delta L}{b}\由于θ很小,反射光线在标尺上的移动距离Δn 与θ的关系为:\\Delta n = D\theta \approx \frac{D\Delta L}{b}\从而可得:\\Delta L =\frac{b\Delta n}{D}\将其代入胡克定律,可得杨氏弹性模量的表达式为:\Y =\frac{8FLD}{\pi d^2 b\Delta n}\其中,d 为金属丝的直径。
三、实验仪器1、杨氏弹性模量测定仪包括光杠杆、望远镜和标尺组成的光杠杆系统,以及用于加力的砝码和托盘。
2、螺旋测微器用于测量金属丝的直径。
3、游标卡尺用于测量光杠杆的长臂长度 b 和平面镜到标尺的距离 D。
4、米尺用于测量金属丝的原长 L。
四、实验步骤1、仪器调节(1)调节杨氏弹性模量测定仪,使金属丝竖直且与平台垂直,光杠杆平面镜与平台平行。
(2)调节望远镜,使其与光杠杆平面镜等高,且能清晰看到标尺的像。
金属丝拉伸变形 图3.1.1 杨氏弹性模量的测量
【实验目的】
(1)用拉伸法测量金属丝的杨氏弹性模量。
(2)掌握用光杠杆测量微小长度的原理及方法。
(3)学会用逐差法处理实验数据和不确定度的计算。
【实验原理】
物体在外力的作用下发生形变,若撤走外力后形变消失,即物体恢复原状,这种形变叫做弹性形变,当外力超过某一限度,撤除外力后,物体不能恢复原状而留下剩余形变称为塑性形变,产生塑性形变的最小限度叫弹性极限;当外力
进一步增大到某一点时,物体会突然发生很大的形变,则该
点称为屈服点,超过屈服点后,该物体就会发生断裂。
在物
体的弹性范围内,产生一定的形变所需应力与应变(相对形变)之比称为弹性模量。
如果物体是柱形或条形,则(由拉力或压力所导致)沿纵向的弹性模量叫杨氏弹性模量。
如图3.1.1所示,设一粗细均匀的金属丝长度为L ,横截面面积为S ,将其上端固定,下端悬挂砝码,金属丝受砝码重力F 的作用而发生形变,伸长量为
L ,F /S 是金属丝截面上单位面积所受的作用力,叫做应力,而L /L 是金属丝单位长度的相对形变,叫做应变,由胡克定律得:在弹性形变范围内,物体所受的应力F/S 与应变△L/L 成正比,即
F L E S L
∆= (3.1.1) 其比例系数
//F S
E L L =∆
杨氏模量测量仪 图3.1.2
(3.1.2)
称为杨氏弹性模量,简称杨氏模量。
式中各量的单位均用SI 单位时,E 的单位为帕斯卡(即Pa ,1 Pa =1 N/m 2)。
杨氏模量是表征物体(材料)性质的一个参量,与物体的几何尺寸以及外力大小无关,对一定材料而言,E 是一个常数,它仅取决于材料的性质。
杨氏模量的大小标志了材料的刚性。
【实验仪器简介】
1. 杨氏模量仪
杨氏模量仪如图3.1.2所示。
三脚底座上装有两个
立柱和三个调整螺丝(调节调整螺丝可使钢丝铅直),
立柱的上端装有横梁,横梁中间小孔中有个上夹头A ,
用来夹紧金属丝L 的上端。
立柱的中部有一个可以沿立
柱上下移动的平台C ,用来承托光杠杆M 。
平台上有一
个圆孔和一条横槽,圆孔中有一个可以上下滑动的小圆
柱形的下夹头B ,用来夹紧金属丝的下端,小夹头下面
挂一砝码托盘,用于承托使金属丝拉长的砝码。
2. 镜尺组 镜尺组包括一个支架上安装的望远镜R 和标尺S 。
望远镜水平安装,标尺贴近望远镜且竖直安装,与被测长度变化方向相平行。
3. 光杠杆
如图3.1.3所示,光杠杆是将一小圆形平面反射镜M 固定在下面有三
个足尖f 1、f 2和f 3的“T ”形三脚支架上,f 1、f 2、f 3
三点构成一个等腰三角形。
图3.1.3
后足尖f 1到前足尖f 2、f 3连线的垂直距离b 称为光杠杆的杆长。
光杠杆镜尺法测量微小长度变化的原理:
如图3.1.2所示,测量时,将光杠杆两前足尖f 2、f 3放在平台上的横槽内,后足尖f 1放在小圆柱体下夹头的上面,镜面M 垂直于平台。
将望远镜对准镜面时,能从望远镜中看到标尺在镜中的反射像,并可读出与望远镜叉丝横线相重合的标尺读数。
设未增加砝码时,平面镜M 的法线与望远镜轴线一致,从望远镜中读得的标尺读数为N 0。
当增加砝码时,如图
3.1.4所示,金属丝伸长L ,光杠杆后足尖f 1随之下降L ,平面镜M 转过α角至M '位置,平面镜法线也转过 角,从N 0发出的光线被反射到标尺上某一位置(设为N 2)。
根据光的反射定律,反射角等于入射角,即
0112N ON N ON α∠=∠=(ON 1为平面镜转过 角后的法线位置)
所以 022N ON α∠=
由光的可逆性可知,从N 2发出的光经平面镜M '反射后进入望远镜而被观察到。
从图
3.1.4中的几何关系可得
光杆杆测量原理
图3.1.4
tan L
b α∆=
(3.1.5)
tan 2N
D α∆=
(3.1.6)
式中 D —— 标尺到平面镜的距离(0D ON =);
N —— 标尺两次读数的变化量,此处20||N N N ∆=-。
因L 很小,且L b ∆<<,故 很小,所以
tan L
b αα∆≈≈
(3.1.7)
又因为N D ∆<<,故2 亦很小,所以
D N ∆≈
≈αα22tan
(3.1.8) 由式(3.1.7)和式(3.1.8)消去,得
2L N b D
∆∆= 即 2b N
L D ⋅∆∆=
(3.1.9)
此式即为光杠杆测量微小伸长量的原理公式。
也可表示为
2D N L K L b ∆=⋅∆=⋅∆
(3.1.10)
式中 K (=2D/b ) —— 光杠杆的放大倍数。
本实验中,b 取0.04~0.08m ,D 取1~2m ,放大倍数可达25~100倍,因为D b >>,所以N L ∆>>∆。
L 原本是很难测准的微小长度变化,但经过光杠杆镜尺组转换为标尺上较大范围的读数变化量
N 后,变得容易得到。
其作用与杠杆的作用原理一样,是一种光学放大的方法,故这种装置称为“光杠杆”。
这种方法不但可以提高测量的准确度,而且可以实现非接触测量。
将式(3.1.9)代入式(3.1.4)中,得到杨氏弹性模量E 的测量公式
28πFLD E d b N
=∆ 式中 L —— 待测金属丝的长度(0.5~1.5 m );
D —— 标尺到平面镜的距离(1.5~2.0 m );
d —— 金属丝的直径(0.0006~0.0009 m );
b —— 光杠杆后足尖到两前足尖连线的垂直距离(0.04~0.08 m );
F —— 待测金属丝沿长度方向所受的外力(一个砝码质量1 kg );
N —— 标尺读数的变化量。
【实验内容】
1. 调节仪器
基本要求:望远镜全视场内清晰无视差、且叉丝位于标尺零刻度附近(±1cm );光杠杆足尖距选择适当、放置合理。
(1)用杨氏模量底座水准仪测量仪调节支架底座的三个螺丝,使支架垂直(钢丝铅直),并使夹持钢丝下端的夹头(小金属圆柱体)能在平台小孔中无摩擦地自由活动。
(2)将光杠杆放在平台上,两前足尖放在平台的沟槽中,后足尖放在下夹头的上表面(不得与钢丝相碰,不得放在夹子和平台之间的夹缝中,以使后足尖能随下夹头一起升降,准确地反映出钢丝的伸缩),然后用眼睛观察,调节小平面镜镜面垂直于平台。
(3)调节望远镜标尺至光杠杆平面镜的距离。
(4)调节望远镜与小平面镜大致等高(先用钢卷尺测量一下平面镜离地面的高度,然后再用钢卷尺测量并调节望远镜的高低与此大致等高)。
(5)移动望远镜,使其对准平面镜,并使望远镜上方两端的缺口准星与平面镜三点成一线。
(6)“外视”观察寻找标尺像。
沿望远镜上方用眼睛对着平面镜直接看去,找到标尺像。
如果看不到标尺像,适当调节望远镜的位置与倾斜度和平面镜的倾斜度。
(7)“内视”调节望远镜。
先转动目镜,使叉丝清晰;后调节物镜(转动右边手轮),即望远镜调焦,使标尺像清晰且无视差(注意:未加砝码时,要使叉丝水平线处于标尺“0”点附近0.01m之内)。
【思考题】
(1)光杠杆利用什么原理测量微小长度变化?如何提高其灵敏度?
(2)杨氏弹性模量的意义是什么?写出其测量公式,说明其中各量用何种仪器测量。
(3)逐差法处理数据的优点是什么?什么样的数据才能用逐差法处理?
(4)本实验中用不同的测量仪器测量多种长度量,为什么?哪些量的测量误差对结果影响大?
【预习要求】
(1)了解杨氏弹性模量仪的结构及用法。
(2)了解光杠杆的结构和调整方法。
(3)了解望远镜的结构及使用方法。
(4)预习逐差法如何记录及处理数据。
(5)预习微小误差准则。
(6)在数据纸上做好记录表格。