直方图的形状分析和判断
- 格式:doc
- 大小:39.00 KB
- 文档页数:1
2016监理工程师《三控》考点18-4考点:工程质量统计分析方法(一)调查表法统计调查表法又称统计调查分析法,它是利用专门设计的统计表对质量数据进行收集、整理和粗略分析质量状态的一种方法。
在质量控制活动中,利用统计调查表收集数据,简便灵活,便于整理,实用有效。
它没有固定格式,可根据需要和具体情况,设计出不同统计调查表。
应当指出,统计调查表往往同分层法结合起来应用,可以更好、更快地找出问题的原因,以便采取改进的措施。
(二)分层法分层法又叫分类法,是将调查收集的原始数据,根据不同的目的和要求,按某一性质进行分组、整理的分析方法。
分层法是质量控制统计分析方法中最基本的一种方法。
其他统计方法一般都要与分层法配合使用。
(三)排列图法1.排列图法的概念(I)用途:排列图法是利用排列图寻找影响质量主次因素的一种有效方法。
(2)排列图又叫帕累托图或主次因素分析图,它是由两个纵坐标、一个横坐标、几个连起来的直方形和一条曲线所组成。
2.排列图的观察与分析(I)观察直方形,大致可看出各项目的影响程度。
排列图中的每个直方形都表示一个质量问题或影响因素。
影响程度与各直方形的高度成正比。
(2)利用ABC分类法,确定主次因素。
将累计频率曲线按0~80%、80%~90%、90%~l00%分为三部分,各曲线下面所对应的影响因素分别为A、B、C三类因素。
3.排列图的应用排列图可以形象、直观地反映主次因素。
其主要应用有:(1)分析造成质量问题的薄弱环节。
(按不合格点的内容分类)(2)找出生产不合格品最多的关键过程。
(按生产作业分类)(3)分析比较各单位技术水平和质量管理水平。
(按生产班组或单位分类)(4)分析措施是否有效。
(将采取提高质量措施前后的排列图对比)(5)还可以用于成本费用分析、安全问题分析等。
(四)因果分析图法1.因果分析图法的概念(1)用途。
因果分析图法分析某个质量问题(结果)与其产生原因之间关系。
(2)因果分析图也称特性要因图,又因其形状常被称为树枝图或鱼刺图。
正态分布判定标准(一)正态分布判定标准引言正态分布是统计学中最重要的分布之一,广泛应用在各个领域的数据分析和建模中。
判断一个数据集是否服从正态分布是数据分析的基础,本文将介绍常用的正态分布判定标准。
直方图观察法使用直方图是最常见的判断一个数据集是否服从正态分布的方法之一。
1.绘制直方图:将数据按照一定的组距分组,并绘制柱状图。
横轴表示数据的取值范围,纵轴表示该范围内数据的频数或频率。
2.观察直方图形状:正态分布的直方图呈钟形曲线状,均值处的频数最高,两侧对称逐渐变小。
如果数据的直方图近似呈现钟形曲线状,则可以初步认定数据集服从正态分布。
正态概率图观察法正态概率图是一种常用的判定数据服从正态分布的方法。
1.绘制正态概率图:将数据按照从小到大排序,并绘制点图。
横轴表示数据的排序位置,纵轴表示数据的值。
2.观察图形形状:如果数据集服从正态分布,图形应该近似为一条直线。
如果图形出现明显的非线性趋势或者拐点,则说明数据不服从正态分布。
正态概率图更加直观地展现了数据是否服从正态分布。
Shapiro-Wilk检验法Shapiro-Wilk检验是一种常用的正态性检验方法,适用于样本量较小的情况。
1.提出假设:首先提出原假设和备择假设。
原假设(H0)是“样本数据符合正态分布”,备择假设(H1)是“样本数据不符合正态分布”。
2.计算检验统计量:根据样本数据计算出Shapiro-Wilk检验的统计量W。
3.判断拒绝域:根据设定的显著性水平,查表得到临界值。
如果W小于临界值,则拒绝原假设,说明数据不服从正态分布;反之,则无法拒绝原假设,说明数据服从正态分布。
Shapiro-Wilk检验是一种较为准确的正态性检验方法,但对于样本量较大的数据集效果并不理想。
正态性指标判定法除了上述方法外,还可以通过一些统计指标来判定数据的正态性。
1.偏度(Skewness):衡量数据分布的偏斜程度。
当偏度接近0时,数据分布较为对称,符合正态分布;当偏度大于0时,数据分布向右偏斜,当偏度小于0时,数据分布向左偏斜。
如何看懂直方图!了解图片质量好坏自入单反后请教了不少老师,同时也在网上找了一些知识来学习,觉得直方图对拍摄很有参考价值,故用积分换来了这篇文章,学习后觉得很受启发,所以转发了上来,供朋友们分享,废话少说,转文如下:准确曝光的好帮手教你如何看懂直方图随着数码相机(以下简称DC)图像处理技术的不断发展,越来越多的相机内置了直方图的功能。
虽然直方图对初学者来说,还很陌生。
但它却早已存在于我们的生活、工作中。
如在著名的图像处理软件Photoshop里面,对应直方图的命令就是Histogram(中文版为“直方图”)。
直方图的含义在一张图片的直方图中,横轴代表的是图像中的亮度,由左向右,从全黑逐渐过渡到全白;纵轴代表的则是图像中处于这个亮度范围的像素的相对数量。
在这样一张二维的坐标系上,我们便可以对一张图片的明暗程度有一个准确的了解。
在Photoshop中,依次单击“图像→调整→色阶(快捷键:Ctrl+L)”即可打开色阶调整框,对图像的直方图进行调整,以此控制图像的明暗变化。
图-1直方图图例直方图的特性DC中的直方图功能与Photoshop中的是一样的。
当直方图中的黑色色块偏向于左边时,说明这张照片的整体色调偏暗,也可以理解为照片欠曝。
而当黑色色块集中在右边时,说明这张照片整体色调偏亮,除非是特殊构图需要,否则我们可以理解为照片过曝。
下面,我们就用几张照片来直观地理解直方图所反映的图像特性。
图-2曝光准确图-2是一张正常曝光的建筑物照片及其对应的直方图。
我们可以看到,在直方图中比较靠左的位置,波峰比较高而且比较密集,这是因为建筑物的背影有较多的暗部区域,而直方图中左侧的位置正是反映暗部区域的分布情况的。
在直方图中央偏右的位置,我们又可以看到一个较高的波峰,这是因为图像中大片的黄色区域所对应的亮度正在这里。
在直方图的最右端,我们可以看到一个较小且突出的波峰,对应在图像中,代表的就是建筑物上圆柱体的强烈反光,由于亮度太大,超出了直方图所能表示的范围,所以便体现在最右端形成了一个波峰。
利用直方图进行样本质量评估的方法与步骤随着数据应用场景的不断增多,数据质量的重要性也越来越受到人们的关注。
数据质量不仅关乎业务决策的准确性,也直接影响到数据分析的结果和模型的准确性。
因此,对于数据的质量进行评估是至关重要的。
利用直方图进行样本质量评估是一种简单而有效的方法,本篇文章将介绍直方图的基本概念、样本质量评估的基本概念以及基于直方图的样本质量评估方法,并结合案例进行说明。
直方图的基本概念直方图是一种统计图表,用来表示数据集中各数据的频数分布情况,通常用于了解数据的分布密度和分散程度。
直方图由多个柱形图组成,每个柱形图表示一个数据区间的频数或频率。
直方图的横轴通常表示数据的范围或类别,纵轴表示频数或频率。
基本概念包括直方图的定义、组成部分和构建方法。
1. 直方图的定义直方图是表示数据集分布情况的图形统计工具,通常使用柱状图表示数据集中各数据之间的频数分布情况。
2. 直方图的组成部分直方图主要由以下三个部分组成:(1)数据区间:将数据集按照一定的范围划分为若干个数据区间。
(2)频数或频率:用柱形的高度表示每个数据区间内包含数据的频数或频率。
(3)坐标轴:通常使用横轴表示数据区间,纵轴表示频数或频率。
3. 直方图的构建方法构建直方图通常需要以下步骤:(1)选择数据区间,并确定每个数据区间的宽度。
(2)计算每个数据区间的频数或频率,通常使用频数或频率分布表汇总数据。
(3)绘制直方图,一般使用柱状图来表示数据区间的频数或频率。
样本质量评估的基本概念对于数据样本的质量评估,通常需要了解样本质量评估的定义、指标和方法。
1. 样本质量评估的定义样本质量评估是指对样本数据的质量进行评定的过程,通过一系列评估指标和评估方法对数据的质量进行分析和评估。
2. 样本质量评估的指标样本质量评估的指标通常包括以下几个方面:(1)准确度:样本数据与真实数据之间的误差。
(2)完整度:样本数据是否完整,是否存在缺失值等。
(3)一致性:样本数据之间是否存在差异,是否符合预期。
直方图小结
直方图是一种用于可视化数据分布的图形表示方法,是统计学中常用的数据分析工具。
通过直方图,我们可以直观地了解数据的分布情况、集中程度以及偏向程度等。
首先,直方图是通过将数据分成相等的区间,然后计算每个区间中数据出现的频数或频率来构造的。
区间通常用水平或垂直的矩形来表示,而矩形的高度表示了该区间内的数据频数或频率。
因此,直方图能够直观地展示数据在不同区间内的分布情况。
其次,通过观察直方图的形状,我们可以了解数据的集中趋势和偏向程度。
例如,如果直方图是对称的,那么数据的集中趋势可能是均值或中位数;如果直方图偏向某一侧,那么数据可能存在正偏(右偏)或负偏(左偏)。
通过直方图,我们可以直观地判断数据的偏向程度,进而进行相应的分析和决策。
此外,直方图还能帮助我们分析数据的分布情况。
通过观察直方图的峰值和波动情况,我们可以得到关于数据分布的一些信息,如数据的集中程度、离散程度以及是否存在异常值等。
例如,直方图中的峰值越高,表示数据在该区间内的频率越高,数据的分布越集中;而直方图中的波动程度越大,表示数据的分布越离散。
最后,直方图还可以用于比较不同数据集之间的分布情况。
通过将多个直方图放在同一坐标系中进行比较,我们可以直观地看出不同数据集的分布差异以及相似之处。
这种比较可以帮助
我们找出数据集之间的关联性和差异性,进而进行更深入的分析和研究。
总之,直方图是一种简单而直观的数据分析工具,能够帮助我们了解数据的分布情况、集中趋势和偏向程度等,进而进行相应的分析和决策。
通过直方图,我们可以更有效地理解和利用数据,提高数据分析的准确性和效率。
直方图的绘制及其解读直方图是一种常用的统计图表,用于展示数据的分布情况。
它通过将数据分成若干个区间,并统计每个区间内数据的频数或频率,然后将这些统计结果以柱状图的形式呈现出来。
直方图的绘制和解读对于数据分析和决策具有重要意义。
本文将介绍直方图的绘制方法,并解读直方图的几个重要特征。
一、直方图的绘制方法绘制直方图的步骤如下:1. 确定数据的范围和区间:首先需要确定数据的范围,即最小值和最大值,然后根据数据的范围确定合适的区间数目。
通常情况下,区间数目的选择应该使得每个区间内的数据数量大致相等,以便更好地展示数据的分布情况。
2. 划分区间并统计频数或频率:根据确定的区间数目,将数据划分到各个区间中,并统计每个区间内数据的频数或频率。
频数是指落在某个区间内的数据的个数,频率是指落在某个区间内的数据的个数与总数据个数的比值。
3. 绘制柱状图:在纵轴上表示频数或频率,在横轴上表示区间,绘制柱状图。
每个柱子的高度表示该区间内数据的频数或频率。
二、直方图的解读直方图可以通过观察柱状图的形状、峰度、偏度等特征来解读数据的分布情况。
以下是几个常见的直方图特征及其解读:1. 对称分布:如果直方图呈现出对称的形状,即左右两侧的柱子大致相等,那么数据呈现出对称分布。
对称分布通常表示数据的均值和中位数相等,且数据的分布相对均匀。
2. 正偏分布:如果直方图呈现出右偏的形状,即右侧的柱子较高,左侧的柱子较低,那么数据呈现出正偏分布。
正偏分布通常表示数据的均值大于中位数,且数据的分布相对集中在较小的数值上。
3. 负偏分布:如果直方图呈现出左偏的形状,即左侧的柱子较高,右侧的柱子较低,那么数据呈现出负偏分布。
负偏分布通常表示数据的均值小于中位数,且数据的分布相对集中在较大的数值上。
4. 峰度:峰度是指直方图的峰值的高度和陡峭程度。
如果直方图的峰度较高,表示数据的分布相对集中,峰值较尖锐;如果直方图的峰度较低,表示数据的分布相对分散,峰值较平缓。
直方图是一种用于表示数字图像中像素灰度分布的统计图表。
它将图像的灰度范围划分为若干个等级,并统计每个等级中像素的数量,从而形成一个柱状图。
直方图的横坐标表示灰度等级,通常从最暗的黑色(0)到最亮的白色(255)进行划分。
纵坐标表示对应灰度等级的像素数量。
通过观察直方图,可以了解图像中不同灰度级别的像素分布情况。
直方图可以提供以下信息:
1. 图像的整体对比度:直方图的形状可以反映图像的整体对比度。
如果直方图的分布集中在较窄的灰度范围内,说明图像的对比度较低;如果直方图的分布较为分散,说明图像的对比度较高。
2. 像素分布情况:直方图可以显示图像中不同灰度级别的像素数量,从而了解图像的亮度分布。
如果某个灰度级别的像素数量较多,说明该灰度在图像中占据较大的比例。
3. 图像的曝光情况:通过观察直方图的左右端点,可以判断图像的曝光情况。
如果直方图的左侧截断,说明图像可能存在欠曝光;如果右侧截断,说明图像可能存在过曝光。
4. 色彩平衡:对于彩色图像,可以分别查看每个颜色通道的直方图,以评估图像的色彩平衡情况。
在图像处理中,直方图可以用于图像增强、对比度调整、色彩平衡等操作的参考。
它是一种简单而直观的工具,帮助我们了解数字图像的统计特征。
QC (旧)七大手法之五——直方图(histogram )第一小节 直方图的观察分析一.定义众所周知在相同的条件下制造出来的产品,其质量特性也不完全相同,但也不会相差太大,总是在一定范围内波动,而且这种波动有一定的规律性,直方图就是直观而形象地把质量分布规律用图形表示出来的统计工具。
直方图(histogram )是频数直方图的简称,又叫质量分布图、矩形图、柱形图、柱状图、频数图。
是指通过对生产过程中产品质量的分布状态的描绘与分析,来判断生产过程质量的一种常用方法,它是工序质量控制统计方法中的主要工具之一(另一工序质量控制工具就是控制图)。
直方图是一种几何图表,它是根据从生产过程中收集到的质量数据(通常不能少于50个,最少不能少于30个数据)分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方形矩形图。
十六世纪末十七世纪初英格兰人普莱菲和德国地理学者科洛玛是使用直方图的先驱者。
直方图的分类:直方图根据使用的各组数据是频数还是频率分为频数直方图与频率直方图;在表示分布时又分为一般直方图和累计直方图两种。
直方图的基本形式(格式):说明:横坐标表示产品的质量特性值(如尺寸、重量等计量值),在横坐标上划分了若干个间距相等的区间(即矩形的宽度表示数据范围的间隔)。
纵坐标表示在n 个数据中,落在各个区间里的频数(即反复出现在该区间的次数)(即高度表示在给定的间隔内数据出现的频数即数目)。
一个个直方形,其宽度取决于区间的宽度,其高度取决于该区间的频数(频数常用f 表示),n 表示样本大小(即样本量),X 表示样本中全体数据的平均值(表示分布中心),S 表示样本的标准偏差(S 表示质量特性离散程度,有的也称标准差)。
直方图适用于对于大量计量值数据进行整理加工,找出其统计规律,也就是分析数据的形态,以便对其整体的分布特征进行推断(即通过变化的高度形态表示数据的分布情况)。
直方图是从总体中随机抽取样本,对从样本中获得的数据进行整理后,用一系列等宽的矩形来表示数据。