3.1.1数系的扩充和复数的概念(教学设计)
- 格式:doc
- 大小:449.50 KB
- 文档页数:6
3.1.1《数系的扩充和复数的概念》说课稿一:学习目标分析学习目标是教学中最先要考虑的因素,明晰学习目标,做到有的放矢,是课堂教学的第一要素。
我从以下几个方面考虑来制定本节课的学习目标:(1)明确《课程标准》要求;(2)分析教材;(3)分析学情。
1、本节课的《课程标准》要求:(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。
(2)理解复数的基本概念以及复数相等的充要条件。
2、分析教材复数的引入实现了中学阶段数系的最后一次扩充.本节课的学习,一方面让学生回忆数系扩充的过程,体会虚数引入的必要性和合理性.另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.因此,本节课具有承前启后的作用,是本章的重点内容.3、分析学情在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。
另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。
4、考情分析从近几年的高考试题来看,复数部分是高考必考内容之一,主要考查复数的有关概念和运算.复数在高考中题型多为选择题和填空题,均为容易题基于以上分析,本节课的学习目标如下:(1)通过回忆数系的扩充过程,观察所列举的复数能简述复数的定义,并能说出复数的实部与虚部。
(2)通过比较给出的两个复数能归纳出复数相等的充要条件,并能解决与例题相似的题目。
(3)通过小组讨论能将复数归类,并能用语言或图形表达复数的分类,会解决含有字母的复数的分类问题。
二:重点、难点分析:本节课是人教版《选修1-2》第三章第一课时,复数的概念为学生学习复数的表示、复数的运算及后继知识奠定了坚实的基础,因此,复数的概念是本节课学习的重点。
象x2=-1这样的方程没有实数解在学生心目中已成定论,负数不能开平方是学生固有的思维模式,而虚数单位i的引入会引起学生认知上的冲突、心理上的排斥。
3.1.1数系的扩充和复数的概念教学设计一、教学背景分析1.本课时在教材中的地位与作用本节课在教材中起着承上启下的作用,能够让学生了解数系扩充的历史,感受数学的理性精神及数学在解决生产生活问题中的价值,渗透数学文化.2.学情分析高二学生的理性思维已经得到发展,能够较为理性的分析和解决问题,但是对虚数单位i的理解以及复数的分类是难点也是重点,需要给学生足够的时间去经历知识的生成,而不是灌输式的将结论直接告诉学生、而后通过大量练习进行强化.3.教学目标的确定及依据知识与技能目标:了解数系扩充的过程,理解复数的基本概念,掌握复数相等的充要条件.过程与方法目标:经历理性分析数系扩充的过程,运用类比推理的方法实现从实数系向复数系的扩充.情感态度与价值观目标:强化理性思维的价值,渗透数学文化.4.教学重点、难点及处理办法教学重点:了解引入复数的必要性,理解复数的基本概念.教学难点:了解数系扩充的过程,理解并接受虚数单位i.二、教法与学法分析教学方法:诱思探究法合作交流法学法分析:建构-探究-归纳-应用.三、教学过程根据以上分析,教学过程从精设问题、引发冲突;引入新数、生成概念;应用举例、强化新知;课堂小结、回顾归纳;布置作业、课外拓展五个环节进行设计:四、教学效果预测学生了解了数系扩充的必要性与合理性,能够类比从自然数系一步步扩充到实数系的过程完成从实数系向复数系的扩充.经历了概念的生成过程,理解复数的代数表达形式,掌握实部、虚部的概念,能够清晰的掌握复数的分类,体会并掌握复数相等的充要条件.享受解决问题的愉悦,感悟数系扩充的历史.但是对虚数单位i的理解和接受是重点也是难点,学生掌握的情况仍需通过课后的作业、练习进行检测和反馈.。
课型:新授课课时:一课时年级:高二〔下〕一、教材分析《数系的扩充与复数的引入》是新课标高中数学选修2-2第三章的第一节课的内容,属于高中数学必修课程中几何与代数主题下的内容。
这节课的主要内容是数系扩充的意义与复数概念的引入,是第一次提出数系扩充的概念,也是阶段数系的最后一次扩充,对于高中生来说,对复数的根本概念的掌握是十分重要的,复数的学习不仅是高中数学中的重要内容,可以帮助学生对数的概念有一个初步的较为完整的认识,也给他们运用数学解决问题增添了新的工具。
并且在实际生活中,复数在电力学、热力学、流体力学、固体力学、系统分析、信息分析等方面都得到了广泛发运用,是现代人才必备的根底知识之一。
因此本节课具有重要的承前启后的作用,是本章的重点内容。
二、学情分析本节课之前,学生已经有了根本的数系扩充的经历与体会,这些内容的学习为本节发学习起到了一定的铺垫作用,但是学生对数的分类的掌握还是主要依靠简单的概念理解与记忆,对数系扩充过程中实际意义及在这其中人类理性的作用体会并不是很深,现阶段大局部学生学习的自主性较差,主动性不够,学习有依赖性,并且局部学生学习的信心不够,对数学产生不了兴趣,学生有根本的分类与抽象概括的数学方法与思想思想,并且观察抽象能力,以及特殊到一般的概括、归纳能力,逻辑思维能力得到了一定的锻炼。
通过情境设置引导学生独立思考,大胆探索和灵活运用分类,归纳等数学思想的学习方法,可以让学生很好的掌握本节课的内容体会数学扩充的意义。
三、教学目标1.知识与技能(1)通过回忆数系扩充的过程,体会数系扩充的必要性与意义,能说出每次数系扩充的实际意义;(2)理解并掌握复数的有关概念〔复数、复数集、复数的代数形式、实部、虚部〕,能准确说出复数的实部虚部;(3)理解并掌握复数相等的充要条件、复数集与实数集的关系、复数的分类,并能用语言或图形表达复数的分类,能解决含有字母的复数相关问题。
2.过程与方法(1)通过回忆数系扩充的过程,让学生通过类比的方法对实数系进行扩充,提高学生类比思考与总结归纳的能力。
数系的扩充和复数的概念教学设计1. 引言在数学的世界里,数系就像是一条漫长的河流,我们每个人都是这条河流上的小船。
今天,我们要聊的是这条河流的扩展,尤其是复数的概念。
让我们一起“扬帆起航”,探寻数系的奥秘吧!2. 数系的扩充2.1 从自然数到整数首先,我们来回顾一下,数系的起点是自然数,也就是大家熟悉的1、2、3、4……这就是我们平时用来计数的基本数字。
可是,当我们遇到像1、2这种情况时,自然数就显得有些“力不从心”了。
这时,整数登场啦!整数包括了自然数和它们的负数,比如1、0、1、2、3等等。
这样一来,我们的数系就更加全面了。
2.2 从整数到有理数接下来,我们来看看有理数。
有理数的概念其实不难理解,它就是可以表示成两个整数之比的数。
举个例子,1/2、3/4这些都是有理数。
有理数的出现,让我们不仅可以处理整数量,还可以处理分数。
它就像是为我们的数系加上了一层新色彩。
2.3 从有理数到无理数不过,有时候我们还会遇到一些数,它们不能用两个整数之比来表示,比如√2、π。
这些数叫做无理数。
无理数的出现,就像给我们的数系带来了些许“神秘感”,它们让我们感受到数学的无限与奇妙。
3. 复数的引入3.1 复数的由来现在,我们进入了今天的重头戏:复数。
复数的诞生,是为了应对一些我们无法用实数解决的问题。
比如,方程x² + 1 = 0就没有实数解。
于是,复数的“英雄”——虚数单位i登场啦!i的平方等于1,这个看似“疯狂”的设定,让我们能够解决更多数学难题。
3.2 复数的基本概念复数其实很简单,它由两个部分组成:实数部分和虚数部分。
比如,3 + 4i就是一个复数,它的实数部分是3,虚数部分是4i。
这样一来,我们就可以用复数处理更多复杂的数学问题了。
复数的引入,犹如为数学的“工具箱”增加了新工具,让它变得更加全面。
4. 教学设计建议4.1 形象化教学为了让学生们更好地理解复数,可以使用一些形象化的教学方法。
比如,使用图像将复数表示在平面上,直观地展示复数的实部和虚部。
《3.1.1数系的扩充和复数的概念》教学设计一、 问题导入在实数集,像x 2=-1这样的方程还是无解的二、 知识回顾在研究实际问题和代数方程的过程中,推动了数系的扩充:1.自然数是“数”出来的,产生了自然数集N ;2.为了使类似x +5=3的方程有解,引入了负整数;N3.为了使类似5x =3的方程有解,引入了分数;Z Q4.为了使类似x 2=3的方程有解,引入了无理数;Q R思考:数系的每次扩充有什么共同特点?提问学生① 用图形展示以上数集间的关系:新数集真包含原有数集 ②引入新数③原有数集的加法乘法运算律仍然成立。
三、 新知构建我们能否将实数集进行扩充,使得在新的数集中,方程x 2=-1能得到圆满解决呢?引入新数i 满足两点:(1)它的平方等于-1,即i 2=-1 .(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2.i 与-1的关系: 就是-1的一个平方根,即方程x 2=-1的一个根。
1.i 叫做虚数单位 。
例举a +i ,0+bi ,a +0i ,0+1i ,归纳得复数的概念2.复数的概念:形如a +bi (a 、b ∈R ) 的数叫复数, a 叫复数的实部, b 叫复数的虚部, 全体复数所成的集合叫做复数集,用字母C 表示。
3. 复数的代数形式: 复数通常用字母z 表示,即把复数表示成a +bi 的形式,叫做复数的代数形式。
4. 复数与实数、虚数、纯虚数及0的关系:对于复数 ,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.四、知识拓展介绍复数的发展史,对复数产生有杰出贡献的数学家:卡当,笛卡尔,欧拉,高斯。
五、深化理解请同学们小组讨论:(1)总结复数的分类(2)所有数集间的关系(3)方程的x 2=-1的所有根六、复数相等在复数集C ={}R b a bi a ∈+,中,任取两个数)与R d c b a di c bi a ∈++,,,(,我们规定:,di c bi a ++与相等的充要条件是a =c 且b =d ,记作,di c bi a +=+)R d c b a ∈,,,(,特殊的⇔=+0bi a a =b =0 .【例1】说出下列复数的实部和虚部,并说明哪些是实数,哪些是虚数,哪些是纯虚数. ①72+; ②i 72; ③0; ④2i ; ⑤85+i ; ⑥i 293-; ⑦)31(-i ; ⑧i 22-; ⑨i ; ⑩22. 实数: ①③④⑩虚数: ②⑤⑥⑦⑧⑨纯虚数: ②⑦⑨【例2】实数m 取什么值时,复数i m m z )1(1-++=是(1)实数;(2)虚数;(3)纯虚数。
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生理解实数和虚数的概念,了解复数的基本形式。
2. 让学生掌握复数的运算规则,包括加、减、乘、除以及共轭复数的概念。
3. 培养学生运用复数解决实际问题的能力。
二、教学内容1. 实数和虚数的概念:介绍实数和虚数的定义,举例说明实数和虚数的区别。
2. 复数的基本形式:介绍复数的一般形式,解释实部和虚部的意义。
3. 复数的运算规则:讲解复数的加、减、乘、除运算方法,并通过例题演示。
4. 共轭复数的概念:介绍共轭复数的定义,讲解共轭复数的性质和运用。
三、教学重点与难点1. 教学重点:实数和虚数的概念,复数的基本形式,复数的运算规则,共轭复数的概念。
2. 教学难点:复数的运算规则,共轭复数的性质和运用。
四、教学方法1. 采用讲授法,讲解实数、虚数和复数的概念,复数的运算规则,共轭复数的性质和运用。
2. 利用例题演示,让学生直观地理解复数的运算方法。
3. 设计练习题,让学生巩固所学知识。
五、教学步骤1. 引入实数和虚数的概念,举例说明实数和虚数的区别。
2. 讲解复数的一般形式,解释实部和虚部的意义。
3. 讲解复数的加、减、乘、除运算方法,并通过例题演示。
4. 介绍共轭复数的定义,讲解共轭复数的性质和运用。
5. 设计练习题,让学生运用所学知识解决问题。
教案仅供参考,具体教学过程中请根据学生的实际情况进行调整。
六、教学评价1. 通过课堂讲解、例题分析和练习题,评价学生对实数、虚数和复数的概念的理解程度。
2. 通过复数运算的练习题,评价学生对复数运算规则的掌握情况。
3. 通过共轭复数相关练习题,评价学生对共轭复数性质和运用的理解程度。
七、教学拓展1. 介绍复数在工程、物理等领域的应用,激发学生学习复数的兴趣。
2. 引导学生思考复数运算的规律,培养学生的逻辑思维能力。
八、教学资源1. PPT课件:实数、虚数和复数的概念,复数的运算规则,共轭复数的性质和运用。
3.1.1数系的扩充和复数的概念教案篇一:3.1.1数系的扩充与复数的概念(教案)3.1.1数系的扩充与复数的引入【教学目标】1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的分类表;2.理解复数的有关概念以及符号表示;3.掌握复数的代数表示形式及其有关概念;4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。
【学情分析】学生为文科普通版班学生,基础较差,理解力一般,且个别学生学习积极性不够高。
【重点难点】教学重点:引进虚数单位i的必要性、对i的规定以及复数的有关概念。
教学难点:复数概念的理解。
【教学过程】【导入】知识形成过程1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简明扼要的概括和总结)自然数→分数→负数→整数→有理数→无理数→实数2.提出问题我们知道,对于实系数一元二次方程x?1?0,没有实数根。
我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?【活动】组织讨论,研究问题我们说,实系数一元二次方程x?1?0没有实数根。
实际上,就是在实数范围内,没有一个实数的平方会等于负数。
解决这一问题,其本质就是解决一个什么问题呢?组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问题。
即一个什么样的数,它的平方会等于-1。
【讲授】引入新数1.引入新数i,并给出它的两条性质根据前面讨论结果,我们引入一个新数i,i叫做虚数单位,并规定:(1)i??1;(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立。
有了前面的讨论,引入新数i,可以说是水到渠成的事。
这样,就可以解决前面提出的问题(?1可以开平方,而且?1的平方根是?i)。
2.提出复数的概念根据虚数单位i的第(2)条性质,i可以与实数b相乘,再与实数a相加。
《数系的扩充和复数的概念》教学设计一、教学设计背景1.课题:数系的扩充和复数的概念2.学科:数学3.授课年级:高中二年级4.学时数:1课时二、教材分析《数系的扩充和复数的概念》是高中课程里数的概念的最后一次扩展。
引入复数后,不仅可以使学生对数的概念有一个初步完整的认识,也为进一步学习数学奠定基础。
而本节则是该章的基础课、起始课,具有承上启下的作用。
三、学情分析在之前的学习中学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容。
同时学生在本章之前已经学习了《推理与证明》的内容,有了一定的推理与证明能力,有利于本节课运用类比思想对实数集进行扩充。
四、教学目标(1)知识与技能1、了解数系扩充的过程及引入复数的需要。
2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的充要条件。
(2)过程与方法1、通过数系扩充的介绍,让学生体会数系扩充的一般规律。
2、在不断练习中让学生理解和掌握复数的基本概念以及复数相等的充要条件(3)情感态度价值观1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思维在数系扩充中的作用。
2、体会类比、分类讨论、等价转化的数学思想方法。
五、教学重难点1、教学重点:引入复数的必要性与复数的相关概念、复数的分类和复数相等的充要条件。
2、教学难点:虚数单位i的引进和复数的概念及其应用。
六、教学过程(一)、情境导入一、问题引入师:请大家看幻灯片上这个方程,动手试试看它的解是多少?问题:解方程 x 2+1=0生(独立完成):x 2=-1是不存在的,这个方程在实数集中无解。
师:事实上在实数范围内这样的x 确实不存在,为什么会这样呢?假设x是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的概念》。
二、回顾数系的扩充历程 师:其实对于这种“数不够用”的情况,我们并不陌生。
大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。
3.1.2复数的概念教学设计§3.1.1数系的扩充和复数的概念教学目标:1.知识与技能:理解并掌握虚数单位i;理解复数的基本概念及复数相等的充要条件;2.过程与方法:在问题情境中了解数系的扩充过程及引入复数的必要性;3.情感、态度与价值观:通过数系的扩充过程体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。
教学重点:虚数单位i、复数及其相关概念、复数的分类(实数、虚数、纯虚数)、复数相等的充要条件。
教学难点:虚数单位i的引进及复数概念的理解。
教学过程:x+=在实数集中无解,联系从自然数系到实数系的扩充过程,你一、创设情景:方程210能设想一种方法,使得这个方程有解吗?(意图:创设问题情境,使学生明确这里要解决什么问题,联系旧知识,了解解决问题的大致方向)二、探究新知:1.学生回顾从自然数系到实数系的扩充过程:(教师可以通过提问的方式帮助学生回顾数系的扩充过程)(意图:使学生能够通过从自然数系到实数系的扩充过程体会体会实际需求与数学内部的矛盾在数系扩充中的作用。
)2.学生探究,引入虚数单位i:x-=在有理数集中无解的问题,怎么解决方程问题1:就可以解决方程220210x+=在实数集中无解的问题?(意图:通过类比,使学生了解扩充数系要从引入新数开始,引导学生引入虚数单位i)3.对虚数单位i 的理解:(1)虚数单位i 的平方等于-1,即 21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.(3)i 的周期性:41n ii +=, 421n i +=-, 43n i i +=-, 41()n i n Z =∈ 4.复数的引入:问题2:把实数和新引入的虚数单位i 像实数那样进行加法、乘法运算,并希望运算时有关的加法、乘法算律仍然成立,你能得到怎样的数?(意图:1.使学生感受为什么把集合{}|,a bi a b R +∈作为实数集扩充后的新数集) (方法:由学生自己动手试做,然后讨论,最后统一认识)(1)定义:把集合{}|,C a bi a b R =+∈中的数,即形如(,)a bi a b R +∈的数叫复数,其中i 叫做虚数单位,全体复数所成的集合叫做复数集,用字母C 表示。
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生理解实数和复数的概念,掌握实数和复数的关系。
2. 让学生掌握复数的代数表示法,了解复数的几何表示。
3. 让学生学会运用复数的概念和性质解决实际问题。
二、教学内容1. 实数和复数的概念2. 复数的代数表示法3. 复数的几何表示4. 复数的运算5. 复数的应用三、教学重点与难点1. 重点:实数和复数的概念,复数的代数表示法,复数的几何表示,复数的运算。
2. 难点:复数的几何表示,复数的运算。
四、教学方法采用问题驱动法、案例分析法、小组讨论法、讲授法等,引导学生主动探究,提高学生分析问题、解决问题的能力。
五、教学过程1. 实数和复数的概念(2)引入复数的概念,解释复数的概念。
(3)通过实例让学生理解实数和复数的关系。
2. 复数的代数表示法(1)介绍复数的代数表示法,让学生掌握复数的标准形式。
(2)讲解复数的实部和虚部的含义。
(3)通过实例让学生学会写出复数的标准形式。
3. 复数的几何表示(1)介绍复数的几何表示,让学生了解复平面的概念。
(2)讲解复数在复平面上的位置与实部和虚部的关系。
(3)通过实例让学生学会在复平面上表示复数。
4. 复数的运算(1)讲解复数的加减乘除运算规则。
(2)通过实例让学生掌握复数的运算方法。
5. 复数的应用(1)讲解复数在实际问题中的应用,如电路分析、信号处理等。
(2)通过实例让学生学会运用复数解决实际问题。
(3)引导学生思考复数的在其他领域中的应用。
六、课后作业2. 练习复数的代数表示法,写出给定复数的标准形式。
3. 学习复数的几何表示,画出给定复数在复平面上的位置。
4. 练习复数的运算,掌握加减乘除运算规则。
5. 思考复数在实际问题中的应用,举例说明。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生的作业完成情况,评估学生对知识点的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。
3.1.1数系的扩充与复数的概念【教学目标】(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念(2)理解复数的基本概念以及复数相等的充要条件(3)了解复数的代数表示方法【教学重难点】重点:引进虚数单位i的必要性、对i的规定、复数的有关概念难点:实数系扩充到复数系的过程的理解,复数概念的理解【教学过程】一、创设情景、提出问题问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?二、学生活动1.复数的概念:⑴虚数单位:数__叫做虚数单位,具有下面的性质:①_________②______________________________________________⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.(4)对于复数a+bi(a,b∈R),当且仅当_____时,它是实数;当且仅当_____时,它是实数0;当_______时, 叫做虚数;当_______时, 叫做纯虚数;2.学生分组讨论⑴复数集C和实数集R之间有什么关系?⑵如何对复数a+bi(a,b∈R)进行分类?⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?3.练习:(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?2+ 2i , 0.618, 2i/7 , 0,5 i +8, 3-9 i(2)、判断下列命题是否正确:(1)若a、b为实数,则Z=a+bi为虚数(2)若b为实数,则Z=bi必为纯虚数(3)若a为实数,则Z= a一定不是虚数三、归纳总结、提升拓展例1 实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数?解:归纳总结:确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数z=m2+m-2+(m2-1)i是(1)实数?(2)虚数?(3)纯虚数?两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是a+bi=c+di _______________________(a、b、c、d为实数)由此容易出:a+bi=0 _______________________例2已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y.四、反馈训练、巩固落实1、若x,y为实数,且 2x -2y+(x+ y)i=x-2 i求x与y.2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.。
数系的扩充和复数的概念教案一、教学目标1. 了解数系的扩充,掌握实数集、有理数集、无理数集和复数集的概念;2. 掌握复数的定义和表示方法;3. 理解复数加法和乘法的几何意义;4. 能够计算复数的模、共轭和商。
二、教学重难点1. 数系的扩充,包括实数集、有理数集、无理数集和复数集的概念;2. 复数的定义和表示方法;3. 复数加法和乘法的几何意义。
三、教学内容1. 数系的扩充(1)实数集:包括有理数和无理数两部分,用符号“R”表示。
(2)有理数集:可以表示为两个整数之比(分母不为0),用符号“Q”表示。
(3)无理数集:不能表示为两个整数之比,用符号“Q'”表示。
(4)复数集:由实部和虚部构成,形如a+bi,其中a和b均为实数,i是虚单位,用符号“C”表示。
2. 复数的定义与表示方法(1)定义:由一个实部a和一个虚部b构成的有序数组(a,b)称为一个复数z,即z=a+bi。
其中a称为z的实部,b称为z的虚部。
(2)表示方法:用复平面上的点表示。
3. 复数加法和乘法的几何意义(1)复数加法:设z1=a1+b1i,z2=a2+b2i,则z1+z2=(a1+a2)+(b1+b2)i。
即把两个复数看作向量,在复平面上用平行四边形法则相加。
(2)复数乘法:设z1=a1+b1i,z2=a2+b2i,则z1×z2=(a1a2-b1b2)+(a1b2+a2b1)i。
即把两个复数看作向量,在复平面上用角度叠加原理相乘。
4. 计算方法(1)模:|a+bi|=√(a²+b²)。
(2)共轭:若z=a+bi,则其共轭为z*=a-bi。
(3)商:设z1=a+bi,z2=c+di,则它们的商为(z1/z2)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i。
四、教学过程Step 1 引入新知识介绍实数集、有理数集和无理数集,并引入复数集的概念。
3.1.1 数系的扩充和复数的概念教材分析复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解.教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x 2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i 所满足的条件(使i 2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导.教学目标1.知识与技能目标了解引进复数的必要性;理解虚数单位i 以及i 与实数的四则运算规律.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等).2过程与方法目标通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识.3.情感、态度与价值观在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.重点难点重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念. 难点:虚数单位i 的引进及复数的概念.教学过程引入新课1.自然数、负数、分数、无理数这些概念是分别在一些什么样的社会生产背景下建立起来的?(1)自然数:计数的需要.(2)负数:表示相反意义的量、计数需要.(3)分数:整数集中不能整除.(4)无理数:开方开不尽.2.数系的扩充过程:用图形表示包含关系:自然数集N ,,整数集Z ,有理数集Q ,实数集R .3. 为什么要进行数系的扩充?①分数的引入,解决了在自然数集中不能整除的矛盾.②负数的引入,解决了在正有理数集中不够减的矛盾.③无理数的引入,解决了开方开不尽的矛盾. NZ Q R④在实数集范围内,负数不能开平方,我们要引入什么数,才能解决这个矛盾呢?例如,在实数范围内,方程210x+=无解,那么在什么范围内才有解?提出问题:从自然数集N扩充到实数集R每一次扩充的主要原因是什么?每一次扩充的共同特征是什么?活动设计:先让学生独立思考,然后小组讨论,师生共同归纳总结.活动成果:扩充原因:①满足解决实际问题的需要;②满足数学自身完善和发展的需要.扩充特征:①引入新的数;②原数集中的运算规则在新数集中得到保留和扩展,都满足交换律和结合律,乘法对加法满足分配律.探究新知提出问题:方程x2+1=0在R上有解吗?如何对实数集进行扩充,使方程x2+1=0在新的数集中有解?活动设计:小组讨论,类比猜想,设想新数的引进,师生共同完成.学情预测:学生讨论可能没有统一结果,无法描述.类比原来不同阶段数系的每一次扩充的特点,在实数集中方程x2+1=0无解,需要引进“新数”扩充实数集.让我们设想引入一个新数i,使i满足两个条件:(1)i是方程x2+1=0的根,即i2=-1;(2)新数i与实数之间满足加法、乘法的交换律、结合律以及乘法对加法的分配律.提出问题:同学们设想,实数a与新数i相加,实数b与新数i相乘,结果如何表达?实数a与实数b和新数i相乘的结果相加,如何表示?.活动成果:形如a+bi(a,b∈R)的数,包括所有实数,也包括新数bi和a+bi,实数a 和新数i可以看作是a+bi(a,b∈R)这样数的特殊形式,即a=a+0i,i=0+i.实数系经过上述扩充后,得到的新数集C={a+bi|a,b∈R}.我们把形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位.全体复数所构成的集合C叫做复数集,即C={a+bi|a,b∈R}.复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式.提出问题:你认为满足什么条件,可以说这两个复数相等?活动设计:学生讨论探究a+bi=c+di时,实部和虚部应满足的条件,教师补充.活动结果:若a+bi=c+di(其中a,b,c,d∈R),则a=b且c=d,即两个复数相等的充要条件是实部和虚部分别相等.特别地,a+bi=0⇔a=0且b=0.理解新知提出问题:对于复数z=a+bi,当且仅当a,b满足什么条件时,z为实数,为0,为虚数,为纯虚数?活动设计:学生思考、讨论,师生总结.活动结果:当且仅当b=0时,复数z=a+bi是实数;当且仅当a=b=0时,复数z=a +bi为0;当且仅当b≠0时,复数z=a+bi是虚数;当且仅当a=0且b≠0时,复数z=a +bi为纯虚数.复数集、实数集、虚数集和纯虚数集之间的关系用图表示如下:提出问题:任意两个复数可以比较大小吗?若可以,请说明进行比较的方法;若不可以,请说明理由.活动设计:让学生思考,议论后发言,教师点拨.学情预测:学生可能不知所云,无法下结论,也可能类比实数的大小比较,认为可以比较大小.活动结果:若两个复数都是实数,则可以比较大小;否则就不能比较大小.因此,一般说来,两个复数只能说相等或不相等,而不能比较其大小.运用新知例1请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数.①2+3i ;②-3+12i ;③2+i ;④ ;⑤-3i ;⑥0. 例2实数m 取什么数值时,复数z =m +1+(m -1)i 是(1)实数;(2)虚数;(3)纯虚数.完成练习册上的3个判断题在第二个问题上适当说明复数不比较大小,可以反正i 与0不能比较大小学生回顾本节课主要内容教学反思这节课我们学习了虚数单位i 及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题 复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类 22(3)1)(32)1x x x i x -+++=±若(是纯虚数,则实数2,+i +i a b a b >>()若则2(1)Z 0∈≥当Z C 时,2i。
数系的扩充与复数的概念一、教学目标:1、知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i ;2、过程与方法:理解并掌握虚数单位与实数进行四则运算的规律;3、 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念。
二、教学重点,难点:复数的基本概念以与复数相等的充要条件。
三、教学方法:阅读理解,探析归纳,讲练结合四、教学过程(一)、问题情境1、情境:数的概念的发展:从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面.①解决实际问题的需要.由于计数的需要产生了自然数;为了刻画具有相反意义的量的需要产生了负数;由于测量等需要产生了分数;为了解决度量正方形对角线长的问题产生了无理数(即无限不循环小数).②解方程的需要.为了使方程40x +=有解,就引进了负数,数系扩充到了整数集;为了使方程320x -=有解,就要引进分数,数系扩充到了有理数集;为了使方程22x =有解,就要引进无理数,数系扩充到了实数集. 引进无理数以后,我们已经能使方程2x a =(0)a >永远有解.但是,这并没有彻底解决问题,当0a <时,方程2x a =在实数范围内无解.为了使方程2x a =(0)a <有解,就必须把实数概念进一步扩大,这就必须引进新的数.(可以以分解因式:44x -为例)2、问题:实数集应怎样扩充呢?(二)、新课探析1、为了使方程2x a =(0)a <有解,使实数的开方运算总可以实施,实数集的扩充就从引入平方等于1-的“新数”开始.为此,我们引入一个新数i ,叫做虚数单位(imaginary unit ).并作如下规定:①21i =-;②实数可以与i 进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立.在这种规定下,i 可以与实数b 相乘,再同实数a 相加得i b a ⋅+.由于满足乘法交换律和加法交换律,上述结果可以写成a bi + (,a b R ∈)的形式.2、复数概念与复数集C形如a bi +(,a b R ∈)的数叫做复数。
§3.1.1数系的扩充和复数的概念(教学设计)教学目标:知识与技能目标:了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。
理解虚数单位i 以及i 与实数的四则运算规律。
过程与方法目标:通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。
情感、态度与价值观目标:通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。
教学重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立教学过程:一、创设情境、新课引入:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数二、师生互动、新课讲解1.虚数单位i :(1)它的平方等于-1,即 21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i !3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C .6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1:请说出复数1132,,,0.222i i i +-的实部和虚部,有没有纯虚数? 答:它们都是虚数,它们的实部分别是3,21,-3;,0虚部分别是2,-3,-21,-0.2 i -0.2 是纯虚数.例2(课本P103例1):实数m 取什么数值时,复数z =m +1+(m -1)i 是:(1)实数? (2)虚数? (3)纯虚数?[分析]因为m ∈R ,所以m +1,m -1都是实数,由复数z =a +bi 是实数、虚数和纯虚数的条件可以确定m 的值.解:(1)当m -1=0,即m =1时,复数z 是实数;(2)当m -1≠0,即m ≠1时,复数z 是虚数;(3)当m +1=0,且m -1≠0时,即m =-1时,复数z 是纯虚数.变式训练2:当m 为何实数时,复数(1)实数 (2)虚数 (3)纯虚数解:(1)m=1±;(2)1m ≠±;(3)m=-2例3:已知(x+y )+(x-2y )i=(2x-5)+(3x+y )i ,求实数x,y 的值.略解:x=3,y= -2222(1)Z m m m i=+-+-课堂练习1:(课本P104练习NO :1;2;3)课堂练习2:1.a=0是复数a+bi(a,b ∈R )为纯虚数的( )A.必要条件B.充分条件C.充要条件D.非必要非充分条件2.以3i-2的虚部为实部,以3i 2+3i 的实部为虚部的复数是( )A.-2+3iB.3-3iC.-3+3iD.3+3i3.下列n 的取值中,使i n =1(i 是虚数单位)的是( )A.n=2B.n=3C.n=4D.n=54.复数z=i+i 2+i 3+i 4的值是( )A.-1B.0C.1 D.i5.我们已知i 是-1的一个平方根,即方程x 2=-1的一个根,那么方程x 2=-1的另一个根是________.6.复数i 2 (1+i)的实部是________.7、:已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,求x 与y .解:根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以x =25,y =4 三、课堂小结,巩固反思:这节课我们学习了虚数单位i 及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题。
说明:复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类四、[课时作业]一、选择题:1.下列复数中,满足方程x 2+2=0的是( )A .±1B .±iC .±2iD .±2i答案 C2.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( )A .1B .0C .-1D .-1或1 答案 B 解析 由题意知⎩⎪⎨⎪⎧m (m +1)=0,m 2-1≠0,∴m =0.3.下列几个命题:①两个复数相等的一个必要条件是它们的实部相等;②两个复数不相等的一个充分条件是它们的虚部不相等;③1-a i(a∈R)是一个复数;④虚数的平方不小于0;⑤-1的平方根只有一个,即为-i;⑥i是方程x4-1=0的一个根;⑦2i是一个无理数.其中正确命题的个数为()A.3 B.4 C.5 D.6答案 B解析命题①②③⑥正确,④⑤⑦错误.4.设a,b∈R,“a=0”是“复数a+b i是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析因为a,b∈R,“a=0”时“复数a+b i不一定是纯虚数,也可能b=0,即a+b i=0∈R”.而当“复数a+b i是纯虚数”则“a=0”一定成立.所以a,b∈R,“a=0”是“复数a+b i是纯虚数”的必要而不充分条件.5.下列命题正确的是()A.若a∈R,则(a+1)i是纯虚数B.若a,b∈R且a>b,则a+i>b+iC.若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1D.两个虚数不能比较大小答案 D解析对于复数a+b i(a,b∈R),当a=0且b≠0时为纯虚数.在A中,若a=-1,则(a+1)i不是纯虚数,故A错误;在B中,两个虚数不能比较大小,故B错误;在C中,若x=-1,不成立,故C错误;D正确.A .2-2iB .-5+5iC .2+iD.5+5i 答案 A解析 设所求新复数z =a +b i(a ,b ∈R ),由题意知:复数-5+2i 的虚部为2;复数5i +2i 2=5i +2×(-1)=-2+5i 的实部为-2,则所求的z =2-2i.故选A.7.若(x +y )i =x -1(x ,y ∈R ),则2x +y 的值为( )A.12 B .2 C .0 D .1答案 D解析 由复数相等的充要条件知,⎩⎪⎨⎪⎧ x +y =0,x -1=0,解得⎩⎪⎨⎪⎧x =1,y =-1,∴x +y =0.∴2x +y =20=1.8.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( )A .-1B .0C .1D .-1或1答案 A解析 由复数z =(x 2-1)+(x -1)i 为纯虚数得⎩⎪⎨⎪⎧ x 2-1=0,x -1≠0,解得x =-1.9.若复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a 的值为( )A .1B .1或-4C .-4D .0或-4答案 C解析 由题意知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解之得a =-4. 10.已知复数z =(a 2-4)+(a -3)i(a ,b ∈R ),则“a =2”是“z 为纯虚数”的() A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 当⎩⎪⎨⎪⎧a 2-4=0,a -3≠0时,z 为纯虚数,即a =±2时,z 为纯虚数.故选A. 二、填空题:11.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________.答案 -2解析 由题意知⎩⎪⎨⎪⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,得x =-2. 12.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________.答案 -2解析 ⎩⎪⎨⎪⎧m 2+m -2=0,m 2-1≠0⇒m =-2. 13.z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________. 答案 2 ±2解析 由z 1=z 2得⎩⎪⎨⎪⎧ -3=n 2-3m -1,-4=n 2-m -6,解得⎩⎪⎨⎪⎧m =2,n =±2. 14.已知集合M ={1,2,(a 2-3a -1)+(a 2-5a -6)i},N ={-1,3},若M ∩N ={3},则实数a =________. 答案 -1解析 由M ∩N ={3}知,3∈M ,即有(a 2-3a -1)+(a 2-5a -6)i =3,所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0,解得a =-1.三、解答题:15、(课本P106习题3.1 A 组:NO :1)16、(课本P106习题3.1 A 组:NO :2)。