其性质见P197
§8.3 贝叶斯(Bezier)曲面
定义 在空间给定(n+1)×(m+1)个点Pi,j (i=0,1…n;j=0,1…m),称下列形式为n×m次Bezier曲 面:
nm
S(u,v)
Pi, j Bi,n (u)Bj,m (v),0 u, v 1
i0 j0
§8.3 贝叶斯(Bezier)曲面
其中 Bi,n (u) 是Bernstein基函数
C C Bi,n (u)
i ui (1 u)ni ,
n
i n! n i!(n i)!
§8.2 贝叶斯(Bezier)曲线
一般称折线P0、P1……Pn为C(u)的控制多边形,称P0、 P1……Pn各点为C(U) 的控制顶点。控制多边形是C(u)的 大致勾画,C(u)是P0、P1……Pn的逼近。
u
u
u
u
§8.1 曲线和曲面的表示
所以 c'(u) [x'(u), y'(u), z'(u)] 矢函数的导矢也是一 个矢函数,因此也有方向和模。当 u 0 ,c(u)/ u 就转变为切线矢量,故又称导矢为切矢。
曲线的自然参数方程 设在空间曲线c(u)上任取一点M0(x0,y0,z0)作为计算 弧长起点,曲线上其他点M(x,y,z)到M0的弧长s作为 曲线方程的参数,这样的方程称为曲线的自然参数 方程,弧长则称为自然参数。
数,得到
Pi '
n
i 1
Pi1
(1
n
i
) 1
Pi
§8.2 贝叶斯(Bezier)曲线
Bezier曲线的升阶 说明:
1、新的控制点是老的特征多边形在参数i/(n+1)处进 行线性插值的结果。