集成运放基本应用之一模拟运算电路
- 格式:docx
- 大小:349.03 KB
- 文档页数:11
集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。
另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。
有的元器件虽然已经坏了,但仅凭肉眼看不出来。
因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。
并记下元器件的实际数值。
否则,实验测得的数值与计算出的数值可能无法进行科学分析。
)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路。
1)反相比例运算电路电路如图8—1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。
U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
第五章模拟集成电路及运算放大器的应用教学内容:电流源工作原理;差分放大电路的分析和计算;集成运算放大器及主要技术指标,理想运算放大器及其组成的各种运算电路,实际运算放大器运算电路的误差分析。
教学要求:1、熟悉集成运放的组成及各部分作用,正确理解集成运放主要指标的物理意义;For personal use only in study and research; not for commercial use2、了解电流源的工作原理;3、了解LM324的工作原理及应用重点、难点:For personal use only in study and research; not for commercial use集成运放的电路组成及各部分作用,集成运放主要性能指标的物理意义及选用。
教学方法:讲授法、讨论法教学时数:12学时教学过程:5.1 模拟集成电路中的直流偏置技术5.1.1 BJT电流源电路1. 镜像电流源T1、T2的参数全同即β1=β2,I CEO1=I CEO2BE1BE2=V V ,E1E2=I I ,C1C2=I I当BJT 的β较大时,基极电流I B 可以忽略R V V R V V V I I I REF C O EE CC EE BE CC 2)(+≈---=≈=动态电阻 ce12CE 2C o 2B )(r v i r I =∂∂=-一般r o 在几百千欧以上⎪⎩⎪⎨⎧↓↓⇒↑⇒↑⇒↑⇒↓↑↑⇒B B R R R C0C1C1)(I V R I V I I I I T1. 电路简单,应用广泛;2. 要求I C1电流较大情况下,R 的功耗较大,集成电路应避免;3. 要求I C1电流较小时,要求R 数值较大,集成电路难以实现。
2. 微电流源e2BE e2BE2BE1E2C2O R V R V V I I I ∆=-=≈=由于BE V ∆很小,所以I C2也很小e2be2e221(R r R r r ce o ++≈β)3. 比例电流源e1E1BE1e0E0BE0R I V R I V +=+S ET BE ln I I V V ≈E1E0T BE1BE0ln I I V V V ≈-E1E0T e0E0e1E1lnI I V R I R I +≈ 1E C1R 0E C0 2I I I I I ≈≈≈>>,时,则若βR e1e0C1R e1T R e1e0C1ln I R R I I R V I R R I ≈+≈e0BE0CC R R R V V I +-≈4. 组合电流源T1、R 1 和T4支路产生基准电流I REFT1和T2、T4和T5构成镜像电流源T1和T3,T4和T6构成了微电流源1EB4BE1EE CC REF R V V V V I --+=5.1.2 FET 电流源1. MOSFET 镜像电流源R V V V I I I GSSS DD REF D2O -+===当器件具有不同的宽长比时REF 1122O //I L W L W I ⋅=(λ=0)r o = r ds2用T3代替R ,T1~T3特性相同,且工作在放大区,当λ=0时,输出电流为2T2GS22n 2T2GS22n2D2)( )()/(V V K V V K L W I -=-'= 2. MOSFET 多路电流源2T0GS0n0D0REF )( V V K I I -==REF 1122D2//I L W L W I =REF 1133D3//I L W L W I =REF 1144D4//I L W L W I =3. JFET 电流源5.2 差分式放大电路一. 直接耦合放大电路的零点漂移现象1. 零点漂移现象:在直接耦合放大电路中,输入电压v I=0,输出电压v O≠0的现象。
模拟电⼦技术实验-集成运算放⼤器的基本应⽤电路实验:集成运算放⼤器的基本应⽤电路⼀、实验⽬的1、掌握集成运算放⼤器的基本使⽤⽅法;2、掌握集成运算放⼤器的⼯作原理和基本特性;3、掌握集成运算放⼤器的常⽤单元电路的设计和调试的基本⽅法。
⼆、实验仪器名称及型号KeySight E36313A型直流稳压电源,KeySight DSOX3014T型⽰波器/信号源⼀体机。
模块化实验装置。
本实验所选⽤的运算放⼤器为通⽤集成运放µA741,其引脚排列及引脚功能如图1所⽰。
引脚2为运放反相输⼊端,引脚3为同相输⼊端,引脚6为输出端,引脚7为正电源端,引脚4为负电源端。
1脚和5脚为输出调零端,8为空脚。
图1 µA741的引脚图三、实验内容1. 反相⽐例运算电路(远程在线实验)在反向⽐例运算电路中,信号由反向端输⼊,其运算电路如图2所⽰。
o图2 反相⽐例运算电路设计反相⽐例运算电路,要求输出电压与输⼊电压满⾜解析式u o=-0.5u i;写出设计过程,在远程实验平台进⾏实验验证。
实验验证时,信号发⽣器输出正弦波,频率为1kHz,峰峰值为4V,连接到输⼊端u i,利⽤⽰波器观察输⼊端u i和输出端u o的电压波形并截图。
注意:要根据远程实验提供的阻值进⾏设计,其中R1可选择20k或10k,R2可选择10k、20k或100k,其中且不可打乱图中R1、R2和R3的位置。
进⼊远程实验操作界⾯:打开远程实验操作界⾯,主界⾯左上⽅为KeySight E36313A型直流稳压电源,右上⽅为KeySight DSOX3014T⽰波器/信号源⼀体机。
两个仪器中间为指导说明区,实验前应从头⾄尾阅读⼀遍指导说明。
主界⾯中下区域为实验操作区。
直流稳压电源的调节:主界⾯左上⽅为直流稳压电源,要求其输出±12V电压。
点击直流稳压电源进⼊调节界⾯。
点击电源开关打开电源,观察屏幕显⽰。
分别点击电源右上⾓的2或3通道选择按钮,在数字区输出12后再按Enter按键,分别设置2和3两个通道的电压为12V。
模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
电路与模拟电子技术实践实验指导书杨智张新军编中山大学南方学院2017年9月广州目录前言 (3)实验一电路元件伏安特性的测试 (6)实验二基尔霍夫定律 (11)实验三叠加定理 (13)实验四戴维南定理 (16)实验五运算放大器和受控源 (21)实验六典型电信号的观察与测量 (30)实验七 RC一阶电路的响应测试 (34)实验八正弦稳态交流电路相量的研究 (39)实验九 BJT 单管共射电压放大电路 (44)实验十 OTL 功率放大电路 (52)实验十一差分式放大电路 (57)实验十二负反馈放大电路 (63)实验十三集成运放基本应用之一--模拟运算电路 (68)实验十四集成运放基本应用之二--电压比较电路 (74)实验十五集成运放基本应用之三--波形发生电路 (79)附录一 SS-7802型示波器使用介绍 (85)附录二 CS-4135型示波器使用说明 (104)附录三晶体管特性图示仪简介 (111)附录四用万用电表检测常用电子元器件 (118)附录五电阻器标称值及精度色环标志法 (123)附录六放大器干扰和噪声的抑制及自激振荡的消除 (125)前言《电路与电子学实验》是配合《电路与电子学》理论课的教学而开设的,其目的是:1、验证、加深理解和巩固所学的电路理论知识;2、熟悉电路中常用元件、器件的各种性能;3、学习各种常用电表、仪器、设备的使用方法,熟练掌握和正确使用常用电子仪器;4、熟悉电子电路的测量技术和调试方法;5、学会处理实验数据,分析实验结果,编写实验报告;6、培养严谨和实事求是的科学作风和团结协作的团队精神。
实验项目包括电路基础和模拟电子技术两部分的内容,分别在电路基础实验室和电子技术实验室进行。
电路基础实验所用的大部分元、器件已经固定在实验装置上,实验时只需作正确的连线就可组成实验电路,模拟电子技术实验则除了正确连线组成电路之外,还要考虑元件的合理布局等,才能构成良好的实验电路。
在电路基础实验中,一些常用的仪器设备,如直流稳压电源、交、直流电压表及电流表、函数信号发生器等已经固定安装在实验装置上,示波器则是另外独立放在实验台上,这些常用电子仪器的使用贯穿于各个实验内容中,实验前必须仔细阅读附录中有关仪器设备的使用说明。
集成运放的典型应⽤上⼀贴我们讲了集成运算放⼤器的原理,对集成运放有了⼀个初步的了解,其实在综保插件⾥应⽤的两个集成运放LM339是作为电压⽐较器应⽤的,通过电流互感器传来的电流信号转换成电压信号,与插件内部设定的电压信号进⾏⽐较,当电流互感器传来的信号⼤于插件内部设定的电压信号时,综保插件就会认为照明主回路有短路故障,从⽽驱动执⾏电路切断主回路的交流接触器控制电源。
漏电保护电路也同短路保护电路⼀样,进⾏电压⽐较来判断设备是不是漏电的。
集成运算放⼤器是这样组成⽐较电路:集成运算放⼤器 ,简称为集成运放.它实际上是⼀个⾼增益的多级直接耦合放⼤器 ,最早⽤于模拟计算机 ,并由此⽽得名.随着电⼦技术的⾼速发展 ,集成运放不断升级换代 ,其性能参数和技术指标不断提⾼ ,⽽价格⽇益降低.它的应⽤早已超出运算的范畴之外 ,已成为⼀种通⽤性很强的功能性器件 ,它的应⽤犹如六、七⼗年代⽆线电电路中的三极管⼀样 ,已成为现代电⼦电路中的核⼼器件 ,正如三级管⼀样 ,如略去电源端和调零端以外 ,集成运放的符号也有三个端 ,即反相输⼊端、同相输⼊端和输出端.图1 集成运放符号集成运放的⾼增益 ,其含义是开环电压放⼤倍数趋于⽆穷⼤ ,其次输⼊电阻⾼ ,⼏乎不从信号源索取电流;输出电阻低 ,带负载的能⼒很强.这三点是集成运放多项性能指标中的集中体现.尤其是前两条 ,是分析运放线性应⽤的原始依据 ,即可以演变为所谓 “虚短” 和 “虚断” 的两条重要性质.由于输出和输⼊可写为:U0 = Au (U+ - U- ) ,因为开环电压放⼤倍数Au趋于⽆穷⼤ ,线性应⽤时:U+ = U- ,即 “虚短” .⾮线性应⽤时 ,某时刻两输⼊端谁的电位⾼ ,输出就反映谁的特征 ,即:当U+ > U- ,输出U0 趋于正向饱和;当U+ < U- ,输出U0趋于负向饱和.这是集成运放运⽤于⾮线性状态的本质特征.电压⽐较器就是集成运放在⾮线性状态下的具体应⽤.所谓电压⽐较器 ,就是⼀种⽤来⽐较输⼊信号电压⼤⼩的电⼦电路.它可以将连续变化的模拟信号转换成仅有两个状态的矩形波.集成运放⼯作在⾮线性区时 ,两个输⼊端谁的电位⾼ ,输出就反映谁的特征 ,这是构成电压⽐较器的理论基础.如下图 2所⽰为最基本的电压⽐较器和其电压传输特性图.其中两个输⼊端中⼀个端⼦为参考端 ,参考电压为UR ,另⼀个端⼦(⽐如反相端)作为信号输⼊端 ,将信号电压与参考电压相⽐较 ,当信号电压⼩于参考电压时 ,输出为⾼电平 ,反之输出为低电平.由此得到如图的电压传输特性曲线.如此简单的电压⽐较器 ,增加限幅保护电路、引⼊正反馈去影响参考电压值等措施就可得到⼏种电压⽐较器的原型电路.⽐如:1.过零⽐较器:参考电压为零 ,输⼊信号每过零时 ,输出发⽣跃变 ,它实际上是⼀个单限⽐较器.最简单的应⽤是可以将正弦波变为⽅波.2.滞回⽐较器:利⽤正反馈来影响原来的参考电压使参考电位与此时的输出状态有关 ,从⽽消除在原来的参考电位附近输⼊信号由于受⼲扰⽽产⽣的空翻现象.3.双限⽐较器:由两个单限⽐较器组成所谓的双限⽐较器(也称为窗⼝⽐较器) ,可以将输⼊信号按需要范围进⾏选取.正是这样简单的电压⽐较器 ,在⾮正弦波产⽣变换电路、延时定时电路、⾃动控制及有关模数接⼝电路中得到了⼴泛的应⽤.如下图3所⽰为⽅波发⽣器的原形电路.它实质上是由⼀个带有正反馈的电压⽐较器和负反馈延时微分电路组成 ,同相端的参考电压由 R1 和 R2 将输出电压分压得到 ,在输出⾼电平或低电平时 ,使之电容充电或放电 ,电容两端得到的电压跟此时的参考电压 U+ 去⽐较 ,从⽽使电路的输出状态来回翻转输出⽅波.在⽅波发⽣器的基础上 ,将电容的充放电回路分开 ,即可得到矩形波发⽣器.在矩形波发⽣器的基础上后⾯加接⼀级积分电路 ,并稍微调整电路结构即可得到三⾓波发⽣器和锯齿波发⽣器.它们是⽰波器中扫描电压信号的基本产⽣电路.555定时器是包含模拟与数字的⼀种综合性中规模集成电路器件.其中模拟部分的核⼼就是由三个5千欧电阻分压器提供参考电压的两个电压⽐较器 ,上⾯的反相⽐较器是以 2P 3UCC作为参考电压 ,下⾯的同相⽐较器是以1P 3UCC作为参考电压.两者的输出分别控制基本 RS触发器的 R端和 S端 ,以触发器的输出作为定时器的输出 ,并以它的反端去控制放电三极管的导通与截⽌.正是这样巧妙地结合,使555定时器加上简单的 RC外围电路 ,便可构成单稳态触发器、施⽶特触发器、多谐⾃激振荡器等应⽤型电路.这⾥⾯ ,两个电压⽐较器将输⼊信号或电容上充放电⽽得的电压值跟参考电压 2P 3UCC和1P 3UCC去⽐较 ,从⽽转换成⾼电平或低电平 ,去控制触发器动作 ,输出所需要的电压波形进⽽控制执⾏机关,从⽽实现了电路的⾃动控制、延时、定时等多项功能 ,⽽电压⽐较器在此发挥出了⾄关重要的作⽤.同上情况相似 ,在并⾏⽐较型AP D转换器中 ,根据量化单位的⼤⼩ ,由 n 个分压电阻组成的分压电路得到(n - 1)个阶梯型电压值作为(n - 1)个电压⽐较器的反相端的参考电压 ,跟加在同相端的采样保持后的模拟信号电压⽐较 ,使每个⽐较器输出⾼电平或低电平 ,并通过其后⾯的缓冲寄存器得到(n - 1)位⼆进制数 ,完成了将模拟信号转换为数字信号的关键的⼀步.综上所述:电压⽐较器是集成运放的⼀种⾮线性应⽤.变化的、随机的输⼊信号跟另⼀个端的参考电压进⾏⽐较 ,使输⼊信号转换成只有⾼电平或低电平的输出信号 ,当输⼊信号电压等于参靠电压(即阈值)时 ,输出状态发⽣翻转.能实现这⼀点的关键就是取决于集成运放优良的性能 ,即开环电压放⼤倍数⽆穷⼤.但是实际运放的开环电压放⼤倍数不可能⽆穷⼤ ,除去运放的响应时间及零点漂移等因素 ,其⽐较误差及上升(下降)沿的陡度决定于运放的开环电压放⼤数 ,其值越⼤ ,产⽣的误差越⼩ ,上升(下降)沿越竖直.假设运放的开环电压放⼤倍数为 10的6次⽅,运放的输出饱和压降为 ±10V ,则产⽣的阈值误差为 ± 10 µV ,可见产⽣的误差是很⼩的.深刻理解电压⽐较器为集成运放在⾮线性应⽤下的本质特征 ,并在教学中将其应⽤实例适时地进⾏归纳、总结、⽐较 ,这对提⾼教学质量 ,丰富学⽣的知识 ,培养学⽣的创新能⼒ ,都有着重要的意义.。
第七章集成运算放大器的应用—模拟运算电路本章是本课程的重点章节之一,应着重掌握以下内容:(1)集成运放工作在线性区和非线性区的条件和特点(2)比例运算电路的结构、特点,Uo 与Ui的特点(3)求和运算电路的结构特点,分析方法(4)积分运算电路的结构,输出输入关系(5)简单电压比较强的分析方法,会计算UT,花电压传输特性,画UO波形本章内容(1)集成运放应用基础(2)运算电路电子课件七. 集成运算放大器的应用—模拟运算电路课时授课教案一授课计划批准人:批准日期:课序19 授课日期授课班次课题:第7章第7.1节集成运放的应用基础第7.2节运算电路目的要求:1.深刻理解集成运放工作在线性区的条件和特点2. 掌握反相比例运算电路的结构、工作原理及特点3.掌握同相比例运算电路的结构、工作原理及特点4.掌握电压跟随器的电路结构、工作原理重点难点:重点反相和同相比例运算电路的结构特点及Uo与Ui的关系难点理解集成运算工作在线性区的条件和特点教学方法手段: 电子课件、课堂提问、课堂讨论、启发式教具:电子课件复习提问 1.知集成运放的Ao,据电压传输特性估算出集成运放的线性输入范围2.集成运放开环应用能否使运放工作在线性区?课堂讨论同相比例和反相比例电路分别作为一、二级组成两级放大电路讨论其输出电压与输入电压之间的关系布置作业本章思考题与习题3、4、7、8课时分配二授课内容7.1集成运放的应用基础复习:上一章介绍了集成运放的符号及集成运放的电压传输特性如图示由电压传输特性曲线知,集成运放有线性工作区和非线性工作区集成运放的最大输出电压610,12=±=±od O M A V U 则最大线性输入电压为v Ui μ1210126max ==,即只有v U i μ12≤时运放才工作在线性区。
可见集成运放开环应用不能工作在线性区,要使集成运放工作在线性区,必需在集成运放外部电路引入负反馈。
7.1.1 理想运放的条件理想条件:0,0,,0,,,0==∞==∞=∞=∞=io IO ic id od I U CMMR r r r A 等 用理想运放代替实际运放所产生的误差工程上是允许的7.1.2 理想运放工作在线性区的特点在线性区)(0-+-=U U A U od 00==--+odA U U U -+=U U 虚短路 0=-=-+idi r U U I 虚开路 虚短路、虚开路是分析集成运放线性应用电路的出发点。
实验八集成运放基本应用之一--模拟运算电路
一、 班级:姓名:学号: 实验目的
1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大电路在实际应用时应考虑的一些问题。
二、 实验仪器及器件
三、 实验原理 1、反相比例运算电路
电路如图8-1所示。
图8-1反相比例运算电路
2、反相加法电路 电路如图8-2所示。
图8-2 反相加法电路
)V R R
V R R (
V i22
F i11F O +-= R 3═R 1
i 1
F
O )V R R 1(V +
=v 0(v )=
1
vv +v v
v ()1
E
v
v
于实验设备使用时间的关系,实验电路板的电阻的实际阻值和标注的阻值存在误差,电路中的其他元件老化等对电路也有一定的误差;
2.由于我们测量时集成运放等元器件一直处于工作状态,长时间的工作也会对数据的测量产生一定的影响;
3.在用万用表测量实验数据时,首先万用表本身存在误差,其次在测量有些数据时。
万用表显示的数值一直在跳动难以稳定,这也对数据的读出造成不能忽视的影响。
实验十二集成运放基本应用之一——模拟运算电路一、实验目的1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性:在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放:开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽f BW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。
即U+≈U-,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路 1) 反相比例运算电路电路如图5-1所示。
对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。
图5-1 反相比例运算电路 图5-2 反相加法运算电路2) 反相加法电路电路如图5-2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。
实验十二集成运放基本应用之模拟运算电路一、实验目的1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性:在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放:开环电压增益A ud=x输入阻抗n=x输出阻抗r o=0带宽f BW=x失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U o= A ud (U + —U-)由于A ud=『而U o为有限值,因此,U + —U-即U + "U—,称为虚短”(2)由于「i=x,故流进运放两个输入端的电流可视为零,即I IB = 0,称为虚断”这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1) 反相比例运算电路电路如图5—1所示。
对于理想运放,该电路的输出电压与输入电压之间的U。
一割R1(a)同相比例运算电路图5-3同相比例运算电路关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R 2 =R I / F F oRi 100K-CZ) -------------+ 12V II®100K-12V5-2反相加法运算电路2)反相加法电路电路如图5 — 2所示,输出电压与输入电压之间的关系为R 3= R 1/R 2/R F3)同相比例运算电路图5— 3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为U °=(1 空)U i R 2= R I /R F当R i —E 时,U o = U i ,即得到如图5 — 3(b)所示的电压跟随器。
图中R 2= R F , 用以减小漂移和起保护作用。
一般 R F 取10K Q , R F 太小起不到保护作用,太大 则影响跟随性。
Ui------ + 12V9+ 12V?+5 -- ° Rs~ — [>8+ ■+Ui a -----1—1——+(b)电压跟随器图5-1反相比例运算电路图 JOKRiRi 100K9 IK [RwJ100K1ODK.-12VVfl4)差动放大电路(减法器)3、交流毫伏表4、直流电压表对于图5-4所示的减法运算电路,当 R i = R 2, R 3= R F 时,有如下关系式R FU 。
冷(U i2 —Uii )R i图5 — 4 减法运算电路图5-5积分运算电路5)积分运算电路反相积分电路如图5— 5所示。
在理想化条件下,输出电压u o 等于式中u c (o)是t = 0时刻电容C 两端的电压值,即初始值 如果U i (t)是幅值为E 的阶跃电压,并设U c (o) = 0,贝U即输出电压u o (t)随时间增长而线性下降。
显然 RC 的数值越大,达到给定 的U o 值所需的时间就越长。
积分输出电压所能达到的最大值受集成运放最大输 出范围的限值。
在进行积分运算之前,首先应对运放调零。
为了便于调节,将图中K i 闭合, 即通过电阻R 2的负反馈作用帮助实现调零。
但在完成调零后,应将 K i 打开,以 免因R 2的接入造成积分误差。
K 2的设置一方面为积分电容放电提供通路,同时 可实现积分电容初始电压u c (o) = 0,另一方面,可控制积分起始点,即在加入信 号u i 后,只要K 2 一打开,电容就将被恒流充电,电路也就开始进行积分运算。
三、实验设备与器件1、±2V 直流电源2、函数信号发生器5、集成运算放大器 卩A741X1udt)RC . O u i dt u c (o)u/t)R i COEdtR 1Ct电阻器、电容器若干。
四、实验内容及实验分析总结实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。
1、反相比例运算电路1)按图5- 1连接实验电路,接通±2V电源,输入端对地短路,进行调零和消振。
2)输入f = 100Hz, U i = 0.5V的正弦交流信号,测量相应的U o,并用示波器观察u o和U i的相位关系,记入表5-1。
表i= ,=图像如下:其中黄线代表Ui蓝线代表U0分析:由公式匕一:U可计算出电路的输出电压与输入电压之比Au的理论值为-10•由上波形图及读表可得Ui=0・175V U0=1.75 其比值为10.可知实验模拟效果非常好。
波形图可看出Ui与U0相位恰好相差半个周期即反相,效果很好。
2、同相比例运算电路1) 按图5- 3(a)连接实验电路。
实验步骤同内容1,将结果记入表5-2。
2) 将图5- 3(a)中的R i断开,得图5-3(b)所示电路重复上述内容,将结果记入表5 -3。
表ii如图:其中黄线代表Ui,蓝线代表U0.分析:R Fu °=(1 +=)U i由公式 R 可计算Au 的理论值为11,读表可得Ui=0・176V U0=1 ・918V 计算得到 Au 的值为10.90,误差为0.9%,模 拟效果很好。
由波形图可看出 Ui 与U0的图像同相,符合要求。
分析:R F u o =(1+ 二-)U i由公式Rl,而将R1断开后公式则变为U0=Ui 可计算Au 的理论值为1,读表可得 Ui=0・144V U0=0.142V 计算得到Au 的 值为10.90,误差为1.39%,模拟效果很好。
由波形图可看出 Ui 与U0的图像同相,符合要求。
3、反相加法运算电路1)自行设计实验电路,使其满足U o=-10(U ii+U i2),并通过给U ii、U i2输入不同的直流电压,验证电路的功能2)实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区。
用直流电压表测量输入电压U ii、U i2及输出电压U o,记入表5-4中表5-4分析由上述表格可知:数据一、数据二误差较大,分析原因可能是直流电压表读取U0时记录数据有误,也有可能是选择的直流信号幅度不合适,导致集成运放没有在线性区工作。
数据三、数据五模拟效果较好。
4、减法运算电路1)自行设计实验电路,使其满足U o=10 (U i2-U ii),并通过给U ii、U i2输入不同的直流电压,验证电路的功能。
2)采用直流输入信号时,确保集成运放工作在线性区。
用直流电压表测量输入电压U ii、U i2及输出电压U o,记入表5—5中。
表5—5分析:数据一数据二数据三数据四数据五理论值(Ui1-Ui2 ) -1.59-2.84-2.2-2.09-2.04*10相对误差 1.9%12.0% 1.6% 2.4% 1.9%由上述表格可知:数据二误差较大,分析原因可能是直流电压表读取U0时记录数据有误,也有可能是选择的直流信号幅度不合适,导致集成运放没有在线性区工作。
其他数据模拟效果较好,误差均在2%左右5、积分运算电路实验电路如图5-5所示1)打开K2,闭合K i,对运放输出进行调零。
2)调零完成后,再打开K i,闭合K2,使u c(o)= 0。
3)预先调好直流输入电压U i = 0.5V,接入实验电路,再打开K2,然后用直流电压表测量输出电压U O,每隔5秒读一次U O,记入表5-6,直到U O不继续明显增大为止-1-3分析:at(s)0510********U o(V)-3.793-4.240-5.132-6.461-7.122-8.216-9.362-9.369S 10 15 20 25 30 35-10-误差分析及总结:图像没有如预期拟合得那么好,主要原因是操作中我们用视频连续拍下数据,但处理时取数据时间间隔并不完全一致,导致误差产生。
但总体来说,线性下降的趋势还是有的,在一定程度上达到了验证积分运算电路的性质。
五、实验小结:六组试验中,反相比例运算电路、同相比例运算电路、跟随特性曲线、减法运算电路这四组实验效果都非常不错,误差均在实验允许的范围内。
只有加法运算电路这组实验的数据以及积分运算电路这组实验的图像有较大的偏差。
分析原因如下:加法运算电路可能是因为直流电压表读取U0 时记录数据有误,也有可能是选择的直流信号幅度不合适,导致集成运放没有在线性区工作。
积分运算电路原因是我们采用视频连续拍下数据,但处理时取数据时间间隔并不完全一致,导致图线并没有如理论一般呈线性下降的趋势。
总的来说,本次实验做得比较成功。
通过本实验,我们对集成运放基本应用中的模拟运算电路有了更深入的理解,增长了知识,收获了技能。