模电实验八集成运放基本应用之一模拟运算电路实验报告
- 格式:doc
- 大小:102.50 KB
- 文档页数:5
一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
实验–集成运算放大器的基本应用模拟运算电路引言集成运算放大器(Integrated Operational Amplifier,简称OPAMP)是一种重要的电子元件,它在模拟电路设计和实验中被广泛应用。
本文将介绍集成运算放大器的基本应用,并通过实验来验证其在模拟运算电路中的功能和性能。
集成运算放大器的基本原理集成运算放大器是一种高增益、差分输入和单端输出的电子放大器。
它具有很高的输入阻抗、低的输出阻抗和大的开环增益。
通过反馈电路,集成运算放大器可以实现各种电路功能,如放大器、比较器、滤波器等。
实验目的本实验旨在通过实际操作,掌握集成运算放大器的基本应用,包括放大器、比较器和无源滤波器。
实验器材•集成运算放大器IC•双电源电源•电阻•电容•示波器•多用电表实验步骤步骤1:放大器的基本应用1.按照电路图连接集成运算放大器,并接入双电源电源。
2.接入电阻、电容等元件,按照电路图搭建一个基本放大器电路。
3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。
4.调节输入信号的幅值和频率,观察输出信号的变化。
步骤2:比较器的应用1.断开反馈电路,使集成运算放大器工作在开环状态。
2.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。
3.调节输入信号的幅值,观察输出信号的变化。
步骤3:无源滤波器的应用1.按照电路图连接集成运算放大器,并接入双电源电源。
2.接入电阻、电容等元件,按照电路图搭建一个无源滤波器电路。
3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。
4.调节输入信号的频率,观察输出信号的变化。
实验结果与分析在实际操作中,我们成功搭建了集成运算放大器的放大器、比较器和无源滤波器电路,并通过示波器观察到了相应的输入输出波形。
在放大器电路中,我们调节了输入信号的幅值和频率,观察到了输出信号的线性放大效果。
在比较器电路中,我们调节了输入信号的幅值,观察到了输出信号的高低电平变化。
实验一集成运放的线性运算电路
一、实验目的
1.掌握运放运算电路的测量分析方法。
2.巩固集成运放几种典型运算电路的用法,掌握电路元、器件选择技巧。
二、实验内容
1.反相求和运算电路实验;
2.差动比例运算电路实验。
三、实验仪器与设备
1.模拟电路实验箱:包括本实验所需元器件;
2.双踪示波器1台;
3.万用电表1台。
五、实验总结
使用 Multisim 电路仿真软件做电路实验,感觉十分方便,可以通过仿真电路来对一些电路原理进行验证,将实验结果与计算结果进行对比分析,通过软件的仿真可以减少实验成本低,并且极大的提高实验过程的安全性。
实验六 集成运算放大器的基本应用——模拟运算电路一、 实验目的1、 研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、 了解运算放大器在实际应用时应考虑的有些问题 二、 实验仪器1、 双踪示波器;2、数字万用表;3、信号发生器 三、 实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
图6-1 反相比例运算电路 2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////图6-2 反相加法运算电路Ui1 Ui23) 同相比例运算电路图6-3(a )是同相比例运算电路。
(a )同乡比例运算 (b )电压跟随器 图6-3 同相比例运算电路 它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10K Ω,太小起不到保护作用,太大则影响跟随性。
4) 差动放大电路(减法器)对于图6-4所示的减法运算电路,当UoUo图6-4 减法运算电路5) 积分运算电路图6-5 积分运算电路反相积分电路如图6-5所示,在理想化条件下,输出电压等于式中是t=0时刻电容C 两端的电压值,即初始值。
如果E 的阶跃电压,并设=0,则UoUi2Ui1UoUi此时显然RC 的数值越大,达到给定的值所需的时间就越长,改变R 或C 的值积分波形也不同。
一般方波变换为三角波,正弦波移相。
6) 微分运算电路微分电路的输出电压正比与输入电压对时间的微分,一般表达式为:利用为自焚电路可实现对波形的变换,矩形波变换为尖脉冲。
图6-6 微分运算电路四、 实验内容及实验数据实验时切忌将输出端短路,否则将会损坏集成块。
输入信号时先按实验所给的值调好信号源再加入运放输入端,另外做实验前先对运放调零,若失调电压对输出影响不大,可以不用调零,以后不再说明调零情况。
集成运算放大器一、实验目的和要求1、了解集成运算放大器的工作原理;2、熟练运用模拟集成电路进行基本电路的仿真设计;3、独立完成运算放大器的加法、减法运算,并设计出y=X1+2X2及y=2X1-X2的运算电路。
二、主要仪器电脑、模拟电路软件三、实验原理1、反相加法运算1)原理如图1,可列出以下等式I I1=u i1/R11,I i2=u I2/R12,I i3=u i3/R13,I F=I I1+I i2+I i3,I=-u O/R F,由上式可知,当时,则上式为当时,则由上列三式可见,加法运算放大电路与运算放大器电路本身无关,只要电阻阻值足够精确,可保证加法运算的精度和稳定性。
平衡电阻2)反相加法运算的特点:输入电阻低,共模电压低,改变某一输入电阻时,对其他电路无影响2、减法运算如果两个输入端都有信号输入,则为差分输入。
差分运算电路如图2所示。
由图可列出:因为u-≈u+,则当R1=R2和R F=R3时,则上式为当R F=R1时,则得由上式可见,输出电压与两个输入电压的差值成正比,可进行减法运算。
电压放大倍数在图2中,如将R3断开,则即为同相比例运算和反相比例运算输出电压之和。
由于电路存在共模电压,为保证运算精度,应当选用共模抑制比较高的运算放大器或选用阻值合适的电阻。
四、实验内容1、设计y=X1+2X2运算电路,在电脑中用仿真软件绘图,保证电路在运行状态。
R2R F R6R1R4R3R5注:R2等于R1、R F并联2、设计y=2X1-X2运算电路,在电脑中用仿真软件绘图,保证电路在运行状态。
注:R F/R1=R3/R2五、总结1、了解了集成运算放大器的工作原理;2、可以熟练运用模拟集成电路进行基本电路的仿真设计;3、输出端和输入端都需要接地;4、虽说是仿真电路,但还是要注意接入元件的正负接口,如电压表;5、进行电脑操作前,先熟悉如何接入元件,并连接各元件,再进行下一步操作。
模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
模电实验八集成运放基本应用之一模拟运算电路实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验八 集成运放基本应用之一--模拟运算电路班级: 姓名: 学号: 2015.12.30一、 实验目的1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大电路在实际应用时应考虑的一些问题。
二、 实验仪器及器件仪器及器件名称 型号 数量 +12V 直流稳压电源 DP832 1 函数信号发生器DG4102 1 示波器 MSO2000A 1 数字万用表 DM3058 1 集成运算放大电路μA741 1 电阻器 若干 电容器若干三、 实验原理1、反相比例运算电路电路如图8-1所示。
图8-1 反相比例运算电路i 1FO V R R V -= 2、反相加法电路电路如图8-2所示。
图8-2 反相加法电路)V R RV R R (V i22F i11F O +-= R 3═R 1// R 2// R F 3、同相比例运算电路电路如图8-3(a)所示。
图8-3(a) 同相比例运算电路 图8-3(b) 电压跟随器i 1FO )V R R 1(V += R 2═R 1// R F 当R 1→∞时,V O ═V i 即得到如图8-3(b)所示的电压跟随器。
4、差分放大电路(减法电路)电路如图8-4所示。
)V V (R R V i1i21FO -=图8-4 减法运算电路5、积分运算电路电路如图8-5所示。
图8-5 积分运算电路v0(t)=−1R1C∫v i dt+V C(0)t如果v i(t)是幅值为E的阶跃电压,并设v c(0) ═0,则v0(t)=−1R1C∫Edt=−ER1Ctt四、实验内容及实验步骤实验前要看清运放组件各管脚的位置;切忌正负电源极性接反和输出端短路,否则将会损坏集成块。
实验八集成运放基本应用之一--模拟运算电路班级:姓名:学号: 2015.12.30一、 实验目的1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大电路在实际应用时应考虑的一些问题。
二、 实验仪器及器件三、 实验原理1、反相比例运算电路电路如图8-1所示。
图8-1反相比例运算电路i 1FO V R R V -= 2、反相加法电路电路如图8-2所示。
图8-2 反相加法电路)V R RV R R (V i22F i11F O +-= R 3═R 1// R 2// R F 3、同相比例运算电路电路如图8-3(a)所示。
图8-3(a)同相比例运算电路图8-3(b) 电压跟随器i 1FO )V R R 1(V +=R 2═R 1// R F 当R 1→∞时,V O ═V i 即得到如图8-3(b)所示的电压跟随器。
4、差分放大电路(减法电路)电路如图8-4所示。
)V V (R R V i1i21FO -=图8-4 减法运算电路5、积分运算电路电路如图8-5所示。
图8-5 积分运算电路如果v i(t)是幅值为E的阶跃电压,并设v c(0)═0,则四、实验内容及实验步骤实验前要看清运放组件各管脚的位置;切忌正负电源极性接反和输出端短路,否则将会损坏集成块。
1、反相比例运算电路1)按图8-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。
2)输入f= 100Hz,V i = 0.5V的正弦交流信号,测量相应的V o并用示波器观察v o和v i的相位关系,记入表8-1。
表8-1f= 100Hz,V = 0.5Vi o2、同相比例运算电路1)按图8-3(a)连接实验电路。
实验步骤同内容1,将结果记入表8-2。
2)按图8-3(a)中的R1断开,得图8-3(b)电路重复内容1)。
表8-2f= 100Hz,V= 0.5Vi o3、反相加法运算电路1)按图8-2连接实验电路。
模拟运算放大电路实验报告模拟运算放大电路实验报告引言模拟运算放大电路是电子工程领域中常见的重要电路之一。
它能够将微小的输入信号放大到较大的幅度,广泛应用于信号处理、传感器接口等领域。
本实验旨在通过搭建模拟运算放大电路并进行实际测量,探索其工作原理和性能。
一、实验装置和方法1. 实验装置本实验使用了一台函数发生器、一台示波器、一块模拟运算放大电路实验板以及一些连接线等设备。
2. 实验方法(1)首先,将函数发生器的正负极分别与实验板上的电源端子连接,以提供所需的电源电压。
(2)然后,将函数发生器的输出端与实验板上的输入端相连,作为输入信号。
(3)接下来,将示波器的探头一个端口连接到实验板的输出端,用于测量输出信号。
(4)最后,调节函数发生器的频率和幅度,观察并记录输出信号的变化。
二、实验结果与分析在进行实验过程中,我们分别改变了输入信号的频率和幅度,观察并记录了输出信号的变化。
下面是我们的实验结果与分析。
1. 频率对输出信号的影响我们首先将输入信号的频率从低到高逐渐增加,并观察输出信号的变化。
实验结果显示,当输入信号的频率较低时,输出信号的幅度较大,且与输入信号具有相同的波形。
然而,当频率超过一定阈值后,输出信号的幅度开始减小,且波形发生了明显的畸变。
这是因为模拟运算放大电路存在带宽限制,无法有效放大高频信号。
因此,合理选择输入信号的频率范围是非常重要的。
2. 幅度对输出信号的影响接着,我们固定输入信号的频率,逐渐增加其幅度,并记录输出信号的变化。
实验结果显示,当输入信号的幅度较小时,输出信号的幅度与输入信号基本一致。
然而,当幅度超过一定阈值后,输出信号的幅度开始饱和,无法继续放大。
这是因为模拟运算放大电路存在供电电压限制,无法提供足够的电压来放大过大的输入信号。
因此,合理选择输入信号的幅度范围也是非常重要的。
三、实验总结与思考通过本次实验,我们对模拟运算放大电路的工作原理和性能有了更深入的了解。
在实际应用中,我们应该根据具体需求合理选择输入信号的频率和幅度,以确保输出信号能够得到有效放大。
实验八集成运放基本应用之一--模拟运算电路
班级:姓名:学号: 2015.12.30
一、 实验目的
1、研究由集成运算放大电路组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大电路在实际应用时应考虑的一些问题。
二、 实验仪器及器件
三、 实验原理
1、反相比例运算电路
电路如图8-1所示。
图8-1反相比例运算电路
2、反相加法电路
电路如图8-2所示。
图8-2 反相加法电路
)V R R
V R R (
V i22
F i11F O +-= R 3═R 1// R 2// R F 3、同相比例运算电路
电路如图8-3(a)所示。
图8-3(a)同相比例运算电路图8-3(b) 电压跟随器
i 1
F
O )V R R 1(V +
=R 2═R 1// R F 当R 1→∞时,V O ═V i 即得到如图8-3(b)所示的电压跟随器。
4、差分放大电路(减法电路)
电路如图8-4所示。
图8-4 减法运算电路
5、积分运算电路
电路如图8-5所示。
图8-5 积分运算电路
如果v i(t)是幅值为E的阶跃电压,并设v c(0)═0,则
四、实验内容及实验步骤
实验前要看清运放组件各管脚的位置;切忌正负电源极性接反和输出端短路,否则将会损坏集成块。
1、反相比例运算电路
1)按图8-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。
2)输入f= 100Hz,V i = 0.5V的正弦交流信号,测量相应的V o并用示波器观察v o和v i的相位关系,记入表8-1。
表8-1f= 100Hz,V i = 0.5V
V i(V)V o(V)v i和v o波形A V
实测值计算值
0.175 -1.755
10.03 10.00
2、同相比例运算电路
1)按图8-3(a)连接实验电路。
实验步骤同内容1,将结果记入表8-2。
2)按图8-3(a)中的R1断开,得图8-3(b)电路重复内容1)。
表8-2f= 100Hz,V i = 0.5V
V i(V)V o(V)v i和v o波形A V
实测值计算值
3、反相加法运算电路
1)按图8-2连接实验电路。
调零和消振。
2)输入信号采用直流信号,图8-6所示电路为简易直流信号源,由实验者自行完成。
实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区。
用直流电压表测量输入电压V i1、V i2及输出电压V o,记入表8-3。
图8-6简易可调直流信号源
表8-3
4、减法运算电路
1)按图8-4连接实验电路。
调零和消振。
2)采用直流输入信号,实验步骤同内容3,记入表8-4。
表8-4
5、积分运算电路
实验电路如图8-5所示。
1)打开K2,闭合K1,对运放输出进行调零。
2)调零完成后,再打开K1,闭合K2,使v c(0)=0。
3)预先调好直流输入电压V i=0.5V,接入实验电路,再打开K2,然后用直流电压表测量输出电压V o,每隔5秒读一次,记入表8-5,直到V o不继续明显增大为止。
表8-5
五、实验总结
1、整理实验数据,画出波形图(注意波形间的相位关系)。
波形如表8-1、表8-2所示。
2、将理论计算结果和实测数据相比较,分析产生误差的原因。
(1)反相比例运算电路
(2)同相比例运算电路
(3)反相加法运算电路
(4)减法运算电路
(5)积分运算电路
误差分析:从表中数据对比可以看出,理论值和测量值有一定的偏差,但是在可以接受的范围内。
误差原因:1.由于实验设备使用时间的关系,实验电路板的电阻的实际阻值和标注的阻值存在误差,电路中的其他元件老化等对电路也有一定的误差;
2.由于我们测量时集成运放等元器件一直处于工作状态,长时间的工作也会对数据的测量产生一定的影响;
3.在用万用表测量实验数据时,首先万用表本身存在误差,其次在测量有些数据时。
万用
表显示的数值一直在跳动难以稳定,这也对数据的读出造成不能忽视的影响。