虚拟变量回归模型
- 格式:ppt
- 大小:438.50 KB
- 文档页数:17
第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。
一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。
虚拟变量也可以放到回归模型中。
这种模型被称为方差分析(ANOVA)模型。
2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。
所有的虚拟变量都用字母D表示。
(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。
对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。
②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。
所有其他的组都与基准组进行比较。
③截距值(β1)代表了基准组的均值。
④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。
⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。
⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。
因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。
但要确定做这个回归时,一定要使用回归软件包中的无截距选项。
⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。
为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。