边坡稳定计算
- 格式:doc
- 大小:92.14 KB
- 文档页数:6
边坡稳定性计算与防护设计1. 引言边坡稳定性是指在地质条件和外力作用下,边坡能否保持原有的形态和稳定状态。
边坡稳定性计算和防护设计是土木工程领域中的关键问题,涉及到公路、铁路、水电站等工程项目的设计和建设。
本文将围绕边坡稳定性的计算方法和防护设计原则展开论述。
2. 地质条件分析边坡稳定性受到地质条件的影响,因此在进行边坡稳定性计算之前,必须对地质条件进行详细的分析和评估。
地质条件包括岩土类型、地层结构、地下水位等因素,通过对这些因素的综合分析,可以确定边坡的稳定性参数。
3. 边坡稳定性计算方法边坡稳定性计算是基于力学原理和土体力学理论进行的。
常用的计算方法包括切片法、极限平衡法和有限元法等。
切片法是最常用的方法,通过将边坡切分为多个切片,分析每个切片的稳定性,最终得出整个边坡的稳定性结果。
极限平衡法则将边坡稳定性问题转化为力学平衡的问题,通过求解极限平衡状态下的力学平衡方程,得出边坡的稳定性安全系数。
有限元法则使用计算机模拟边坡的力学行为,通过分析边坡的应力和变形分布,评估边坡的稳定性。
4. 边坡防护设计原则边坡防护设计是为了保证边坡的稳定和安全,主要包括边坡支护、排水措施和植被恢复。
边坡支护采用的方法有护坡、挡墙和锚杆等。
护坡是最常用的方法,通过在边坡表面设置边坡防护网、喷锚网等,来增加边坡的抗滑能力。
挡墙则是在边坡上设置防护墙体,用以抵抗边坡的滑动和倾斜。
锚杆是通过钢筋或钢缆进行固定,增加边坡的抗拉能力。
排水措施是为了防止边坡内部的积水,通过设置排水管网和引水渠等,将积水排出边坡。
植被恢复则是为了加强边坡的抗冲刷能力,通过植被的生根和固土作用,增加边坡的稳定性。
5. 结构化边坡防护设计对于较大规模的土木工程项目,如高速公路和水电站,需要进行结构化边坡防护设计。
结构化边坡防护设计将考虑到边坡的地质条件、边坡稳定性计算结果以及风险评估,通过设计和施工结构化防护体系,确保边坡的稳定和安全。
结构化边坡防护设计通常采用钢筋混凝土梯田护坡、锚杆喷注混凝土等技术,结合边坡的特点和工程要求,提出合理的防护解决方案。
一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20023、《建筑施工计算手册》江正荣编著一、基本参数边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12边坡高度H(m) 11.862 边坡斜面倾角α(°)40坡顶均布荷载q(kPa) 0.2二、边坡稳定性计算计算简图滑动面参数滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m)1 35 5.672 35 5.63 35 5.67土条面积计算:R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/mT1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/mR2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/mT2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/mR3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865kN/mT3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/mK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1)第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为:ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφiK s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25满足要求!。
书山有路勤为径,学海无涯苦作舟
边坡稳定性计算极限平衡计算法的园弧形计算法
一、判别准则和要求
判定圆弧形滑坡的条件为:均质松散介质,包含多组产状各异的节理及风化破碎岩体。
二、边坡稳定系数计算
(一)滑动面位置的确定
弗先柯(ΦИСΕΗΚΟ·Γ·Η)作图法:根据()计算张裂隙高度,过坡顶B 点,取垂线BF=H90,过F 点以与水平线FC 成()角作直线FE,过坡脚A 点以与水平线成()角作直线AK 交FE 于K 点,再过A 点作AG 使与AB 成()角,作AK 的中垂线,过A 点作AG 线的垂线,并与上述中垂线相交于O 点,O 点即为所求的滑动弧AK 的圆心,如图1。
霍克(E· Hoek)曲线法①:用内摩擦角与边坡角度和高度H 查曲线图求出滑动弧圆心。
用试算法确定滑动面位置:取弧长L(如或等)与滑坡体最大厚度d 之比值等于7,作若干圆弧(一般作5 条,见图2),然后分别进行稳定性计算,取稳定性系数值最小者。
图1 弗先柯(ΦИСΕΗΚΟ·Γ·Η)图2 按试算法确定临界
临界滑面位置滑面位置
(二)稳定系数计算
圆弧形滑坡条块法计算是先根据所确定的滑动面位置,将滑坡体划分成若干个垂直条块,如图3,然后按分条块逐个进行的。
平面、折线滑动法边坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑边坡工程技术规范》GB50330-20133、《建筑施工计算手册》江正荣编著一、基本参数二、边坡稳定性计算计算简图滑动体自重和顶部所受荷载:W= (1/2γH+q)×H×(ctgω-ctgα)=1/2(γH+2q)×H×sin(α-ω)/sinω/sinα边坡稳定性系数为:K s=(W×cosω×tanφ+H/sinω×c)/(W×sinω)= cotω×tanφ+2c/(γH+2q)×sinα/(sin(α-ω)×sinω)滑动面位置不同,Ks值亦随之而变,边坡稳定与否根据稳定性系数的最小值Ksmin判断,相应的最危险滑动面的倾角为ω0。
求K smin值,根据dKs/dω=0,得最危险滑动面的倾角ω0的值:ctgω=ctgα+(a/(tanφ+a))0.5×cscα式中:a=2c/(γH+2q)= 2×26/(19×6.5+2×2)= 0.408ctgω=ctgα+(a/(tanφ+a))0.5×cscα= ctg(62°)+(0.408/(tan(13°)+0.408))0.5×csc(62°) = 1.437则边坡稳定性最不利滑动面倾角为:ω0= 34.834°K smin=(2a+tanφ)×ctgα+2×(a(tanφ+a))0.5×cscα=(2×0.408+tan(13°))×ctg(62°)+2×(0.408×(tan(13°) +0.408))0.5×csc(62°)=1.713≥1.3满足要求!。
1、一号边坡稳定计算------------------------------------------------------------------------ 计算项目: 1、一号边坡稳定计算------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 建筑边坡工程技术规范(50330--2002)计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 6坡面线号水平投影(m) 竖直投影(m) 超载数1 15.000 10.000 02 2.000 0.000 03 15.000 10.000 04 2.000 0.000 05 10.500 7.000 06 15.000 1.000 0[土层信息]上部土层数 1层号定位重度饱和重度层顶线孔隙水压高(m) (kN/m3) (kN/m3) 倾角(度) 力系数1 27.000 19.000 20.000 0.000 ---层号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 10.000 28.000 10.000 25.000层号十字板τ 强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---================================================================下部土层数 1层号定位重度饱和重度层顶线孔隙水压高(m) (kN/m3) (kN/m3) 倾角(度) 力系数深(m) (kN/m3) (kN/m3) 倾角(度) 系数1 10.000 19.000 20.000 0.000 ---层号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 10.000 28.000 10.000 25.000层号十字板τ 强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---不考虑水的作用[筋带信息]采用锚杆锚杆道数: 13筋带力调整系数: 1.000筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强法向力发高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa) 挥系数1 1.00 3.00 3.00 25.00 100.00 3.00 0.31 60.00 0.002 3.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.503 5.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.504 7.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.505 9.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.506 11.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.507 13.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.508 15.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.509 17.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5010 19.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5011 21.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5012 23.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.5013 25.00 3.00 3.00 25.00 147.00 3.00 0.31 60.00 0.50[计算条件]圆弧稳定分析方法: Bishop法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 2.000(m)搜索时的圆心步长: 2.000(m)搜索时的半径步长: 1.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------[计算结果图]最不利滑动面:滑动圆心 = (-8.960,72.800)(m)滑动半径 = 73.349(m)滑动安全系数 = 1.25≥1.25,符合《建筑边坡工程技术规范(GB50330-2002)》二级边坡安全要求。
边坡稳定性分析计算边坡岩、土体在一定坡高和坡角条件下的稳定程度。
按照成因,边坡分为天然斜坡和人工边坡两类,后者又分为开挖边坡和堤坝边坡等。
按照物质组成,边坡分为岩体边坡、土体边坡,以及岩、土体复合边坡3种。
按照稳定程度,分为稳定边坡、不稳定边坡,以及极限平衡状态边坡。
不稳定的天然斜坡和设计坡角过大的人工边坡,在岩、土体重力,水压力,振动力以及其他外力作用下,常发生滑动或崩塌破坏。
大规模的边坡岩、土体破坏能引起交通中断,建筑物倒塌,江河堵塞,水库淤填,给人民生命财产带来巨大损失。
研究边坡稳定性的目的,在于预测边坡失稳的破坏时间、规模,以及危害程度,事先采取防治措施,减轻地质灾害,使人工边坡的设计达到安全、经济的目的。
1、等厚土层土坡稳定计算------------------------------------------------------------------------[控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 10.000 8.000 02 10.000 0.000 1超载1 距离2.000(m) 宽6.000(m) 荷载(50.00--50.00kPa) 270.00(度)[土层信息]上部土层数 1层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系全孔压(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数1 50.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- ---下部土层数 2层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系全孔压(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数1 4.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- ---2 40.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- ---不考虑水的作用[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 给定圆心、半径计算安全系数条分法的土条宽度: 1.000(m)圆心X坐标: 5.000(m)圆心Y坐标: 12.000(m)半径: 15.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------ 滑动圆心 = (5.000,12.000)(m)滑动半径 = 15.000(m)滑动安全系数 = 1.551起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------------------------------------4.000 -3.200 -35.004 0.98 10.00 25.00 4.03 0.00 0.00 0.00 0.00 0.00 -2.31 11.31-3.200 -2.400 -31.349 0.94 10.00 25.00 11.58 0.00 0.00 0.00 0.00 0.00 -6.02 13.98-2.400 -1.600 -27.832 0.90 10.00 25.00 18.13 0.00 0.00 0.00 0.00 0.00 -8.46 16.52-1.600 -0.800 -24.426 0.88 10.00 25.00 23.78 0.00 0.00 0.00 0.00 0.00 -9.83 18.89-0.800 -0.000 -21.109 0.86 10.00 25.00 28.62 0.00 0.00 0.00 0.00 0.00 -10.31 21.030.000 0.909 -17.649 0.95 10.00 25.00 43.37 0.00 0.00 0.00 0.00 0.00 -13.15 28.810.909 1.818 -14.037 0.94 10.00 25.00 59.50 0.00 0.00 0.000.00 0.00 -14.43 36.291.8182.727 -10.481 0.92 10.00 25.00 74.63 0.00 0.00 0.00 0.00 0.00 -13.58 43.472.7273.636 -6.965 0.92 10.00 25.00 88.82 0.00 0.00 0.00 0.00 0.00 -10.77 50.273.6364.545 -3.476 0.91 10.00 25.00 102.08 0.00 0.00 0.00 0.00 0.00 -6.19 56.624.5455.455 -0.000 0.91 10.00 25.00 114.43 0.00 0.00 0.00 0.00 0.00 0.00 62.455.4556.364 3.476 0.91 10.00 25.00 125.88 0.00 0.00 0.00 0.00 0.007.63 67.706.3647.273 6.965 0.92 10.00 25.00 136.42 0.00 0.00 0.00 0.00 0.00 16.54 72.317.273 8.182 10.481 0.92 10.00 25.00 146.04 0.00 0.00 0.00 0.00 0.00 26.56 76.218.182 9.091 14.037 0.94 10.00 25.00 154.70 0.00 0.00 0.00 0.00 0.00 37.52 79.369.091 10.000 17.649 0.95 10.00 25.00 162.38 0.00 0.00 0.00 0.00 0.00 49.23 81.7010.000 10.800 21.109 0.86 10.00 25.00 143.82 0.00 0.00 0.00 0.00 0.00 51.80 71.1410.800 11.600 24.426 0.88 10.00 25.00 138.98 0.00 0.00 0.00 0.00 0.00 57.47 67.8011.600 12.400 27.832 0.90 10.00 25.00 133.33 0.00 0.00 0.00 0.00 20.00 71.58 72.2712.400 13.200 31.349 0.94 10.00 25.00 126.78 0.00 0.00 0.00 0.00 40.00 86.77 75.7813.200 14.000 35.004 0.98 10.00 25.00 119.23 0.00 0.00 0.00 0.00 40.00 91.34 70.5914.000 14.909 39.109 1.17 10.00 25.00 124.91 0.00 0.00 0.00 0.00 45.47 107.48 73.3714.909 15.819 43.753 1.26 10.00 25.00 111.73 0.00 0.00 0.00 0.00 45.47 108.72 65.5515.819 16.728 48.797 1.38 10.00 25.00 96.10 0.00 0.00 0.00 0.00 45.47 106.52 57.3016.728 17.638 54.421 1.56 10.00 25.00 77.20 0.00 0.00 0.00 0.00 45.47 99.77 48.9217.638 18.547 60.992 1.88 10.00 25.00 53.36 0.00 0.00 0.00 0.00 18.11 62.50 34.9318.547 19.457 69.555 2.61 10.00 25.00 19.97 0.00 0.00 0.00 0.00 0.00 18.71 29.32总的下滑力 = 905.096(kN)总的抗滑力 = 1403.885(kN)土体部分下滑力 = 905.096(kN)土体部分抗滑力 = 1403.885(kN)筋带在滑弧切向产生的抗滑力 = 0.000(kN)筋带在滑弧法向产生的抗滑力= 0.000(kN)2、倾斜土层土坡稳定计算------------------------------------------------------------------------[控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 10.000 8.000 02 10.000 0.000 1超载1 距离2.000(m) 宽6.000(m) 荷载(50.00--50.00kPa) 270.00(度)[土层信息]上部土层数 3层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 2.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 2.000 ---2 4.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- -3.000 ---3 7.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 2.000 ---下部土层数 3层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 4.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- -3.000 ---2 6.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 5.000 ---3 9.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 4.000 ---不考虑水的作用[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 给定圆心、半径计算安全系数条分法的土条宽度: 1.000(m)圆心X坐标: 5.000(m)圆心Y坐标: 12.000(m)半径: 15.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------ 滑动圆心 = (5.000,12.000)(m)滑动半径 = 15.000(m)滑动安全系数 = 1.551起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------------------------------------4.000 -3.200 -35.004 0.98 10.00 25.00 4.03 0.00 0.00 0.00 0.00 0.00 -2.31 11.31-3.200 -2.400 -31.349 0.94 10.00 25.00 11.58 0.00 0.00 0.00 0.00 0.00 -6.02 13.98-2.400 -1.600 -27.832 0.90 10.00 25.00 18.13 0.00 0.00 0.00 0.00 0.00 -8.46 16.52-1.600 -0.800 -24.426 0.88 10.00 25.00 23.78 0.00 0.00 0.00 0.00 0.00 -9.83 18.89-0.800 -0.000 -21.109 0.86 10.00 25.00 28.62 0.00 0.00 0.00 0.00 0.00 -10.31 21.030.000 0.833 -17.799 0.88 10.00 25.00 39.14 0.00 0.00 0.000.833 1.667 -14.484 0.86 10.00 25.00 52.76 0.00 0.00 0.000.00 0.00 -13.20 32.431.6672.500 -11.217 0.85 10.00 25.00 65.61 0.00 0.00 0.00 0.00 0.00 -12.76 38.512.5003.333 -7.987 0.84 10.00 25.00 77.73 0.00 0.00 0.00 0.00 0.00 -10.80 44.313.3334.167 -4.782 0.84 10.00 25.00 89.13 0.00 0.00 0.00 0.00 0.00 -7.43 49.784.1675.000 -1.592 0.83 10.00 25.00 99.83 0.00 0.00 0.00 0.00 0.00 -2.77 54.875.000 5.938 1.792 0.94 10.00 25.00 124.21 0.00 0.00 0.00 0.00 0.00 3.88 67.275.9386.875 5.382 0.94 10.00 25.00 135.87 0.00 0.00 0.00 0.00 0.00 12.74 72.506.8757.8138.994 0.95 10.00 25.00 146.53 0.00 0.00 0.00 0.00 0.00 22.91 76.987.813 8.750 12.642 0.96 10.00 25.00 156.16 0.00 0.00 0.00 0.00 0.00 34.18 80.668.750 9.375 15.718 0.65 10.00 25.00 108.96 0.00 0.00 0.00 0.00 0.00 29.52 55.409.375 10.000 18.214 0.66 10.00 25.00 112.44 0.00 0.00 0.00 0.00 0.00 35.15 56.3910.000 10.800 21.109 0.86 10.00 25.00 143.82 0.00 0.00 0.00 0.00 0.00 51.80 71.1410.800 11.600 24.426 0.88 10.00 25.00 138.98 0.00 0.00 0.00 0.00 0.00 57.47 67.8011.600 12.400 27.832 0.90 10.00 25.00 133.33 0.00 0.00 0.00 0.00 20.00 71.58 72.2712.400 13.200 31.349 0.94 10.00 25.00 126.78 0.00 0.00 0.00 0.00 40.00 86.77 75.7813.200 14.000 35.004 0.98 10.00 25.00 119.23 0.00 0.00 0.00 0.00 40.00 91.34 70.5914.000 14.874 39.020 1.13 10.00 25.00 120.33 0.00 0.00 0.00 0.00 43.72 103.28 70.6914.874 15.749 43.471 1.21 10.00 25.00 108.23 0.00 0.00 0.00 0.00 43.72 104.54 63.4715.749 16.531 48.007 1.17 10.00 25.00 84.90 0.00 0.00 0.00 0.00 39.13 92.18 50.3916.531 17.314 52.709 1.29 10.00 25.00 71.55 0.00 0.00 0.00 0.00 39.13 88.05 44.1917.314 18.096 57.997 1.48 10.00 25.00 55.49 0.00 0.00 0.00 0.00 34.32 76.16 36.9618.096 19.010 64.945 2.16 10.00 25.00 38.44 0.00 0.00 0.0019.010 19.457 71.802 1.43 10.00 25.00 5.46 0.00 0.00 0.00 0.00 0.00 5.19 15.10总的下滑力 = 905.681(kN)总的抗滑力 = 1404.536(kN)土体部分下滑力 = 905.681(kN)土体部分抗滑力 = 1404.536(kN)筋带在滑弧切向产生的抗滑力 = 0.000(kN)筋带在滑弧法向产生的抗滑力= 0.000(kN)3、复杂土层土坡稳定计算------------------------------------------------------------------------[控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 10.000 8.000 02 10.000 0.000 1超载1 距离2.000(m) 宽6.000(m) 荷载(50.00--50.00kPa) 270.00(度)[土层信息]坡面节点数 3编号 X(m) Y(m)0 0.000 0.000-1 10.000 8.000-2 20.000 8.000附加节点数 7编号 X(m) Y(m)1 -6.000 -5.0002 9.000 -6.0003 8.000 2.0004 20.000 -6.0005 15.000 3.0006 25.000 5.0007 -8.000 0.000不同土性区域数 5区号重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数1 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (0,7,1,2,3,)2 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (2,4,5,3,)3 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (0,3,-1,)4 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (3,5,-2,-1,)5 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (5,4,6,-2,)不考虑水的作用[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 给定圆心、半径计算安全系数条分法的土条宽度: 1.000(m)圆心X坐标: 5.000(m)圆心Y坐标: 12.000(m)半径: 15.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------ 滑动圆心 = (5.000,12.000)(m)滑动半径 = 15.000(m)滑动安全系数 = 1.550起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------------------------------------4.000 -3.200 -35.004 0.98 10.00 25.00 4.03 0.00 0.00 0.00 0.00 0.00 -2.31 11.31-3.200 -2.400 -31.349 0.94 10.00 25.00 11.58 0.00 0.00 0.00 0.00 0.00 -6.02 13.98-2.400 -1.600 -27.832 0.90 10.00 25.00 18.13 0.00 0.00 0.00 0.00 0.00 -8.46 16.52-1.600 -0.800 -24.426 0.88 10.00 25.00 23.78 0.00 0.00 0.00 0.00 0.00 -9.83 18.89-0.800 -0.000 -21.109 0.86 10.00 25.00 28.62 0.00 0.00 0.00 0.00 0.00 -10.31 21.030.000 0.889 -17.689 0.93 10.00 25.00 42.23 0.00 0.00 0.00 0.00 0.00 -12.83 28.090.889 1.778 -14.156 0.92 10.00 25.00 57.67 0.00 0.00 0.000.00 0.00 -14.10 35.241.7782.667 -10.677 0.90 10.00 25.00 72.18 0.00 0.00 0.00 0.00 0.00 -13.37 42.122.6673.556 -7.237 0.90 10.00 25.00 85.80 0.00 0.00 0.00 0.00 0.00 -10.81 48.653.5564.444 -3.824 0.89 10.00 25.00 98.56 0.00 0.00 0.00 0.00 0.00 -6.57 54.774.4445.333 -0.425 0.89 10.00 25.00 110.47 0.00 0.00 0.00 0.00 0.00 -0.82 60.405.3336.222 2.974 0.89 10.00 25.00 121.53 0.00 0.00 0.00 0.00 0.00 6.30 65.506.2227.111 6.382 0.89 10.00 25.00 131.74 0.00 0.00 0.00 0.00 0.00 14.64 70.007.111 8.000 9.814 0.90 10.00 25.00 141.09 0.00 0.00 0.00 0.00 0.00 24.05 73.858.000 8.571 12.655 0.59 10.00 25.00 95.20 0.00 0.00 0.00 0.00 0.00 20.86 49.178.571 9.286 15.187 0.74 10.00 25.00 123.64 0.00 0.00 0.000.00 0.00 32.39 63.059.286 10.000 18.036 0.75 10.00 25.00 128.25 0.00 0.00 0.00 0.00 0.00 39.71 64.3810.000 10.833 21.178 0.89 10.00 25.00 149.71 0.00 0.00 0.00 0.00 0.00 54.09 74.0310.833 11.667 24.637 0.92 10.00 25.00 144.42 0.00 0.00 0.00 0.00 0.00 60.20 70.3811.667 12.500 28.194 0.95 10.00 25.00 138.21 0.00 0.00 0.00 0.00 25.00 77.11 76.5312.500 13.333 31.874 0.98 10.00 25.00 130.97 0.00 0.00 0.00 0.00 41.67 91.16 78.1813.333 14.167 35.709 1.03 10.00 25.00 122.59 0.00 0.00 0.00 0.00 41.67 95.87 72.4614.167 15.000 39.740 1.08 10.00 25.00 112.90 0.00 0.00 0.00 0.00 41.67 98.82 66.2615.000 15.789 43.903 1.10 10.00 25.00 96.62 0.00 0.00 0.00 0.00 39.46 94.36 56.6815.789 16.646 48.464 1.29 10.00 25.00 91.58 0.00 0.00 0.00 0.00 42.85 100.62 54.4916.646 17.503 53.699 1.45 10.00 25.00 75.12 0.00 0.00 0.00 0.00 42.85 95.07 47.0517.503 18.360 59.711 1.70 10.00 25.00 54.81 0.00 0.00 0.00 0.00 24.84 68.78 35.7318.360 19.217 67.182 2.21 10.00 25.00 27.79 0.00 0.00 0.00 0.00 0.00 25.61 27.1419.217 19.457 72.970 0.82 10.00 25.00 1.69 0.00 0.00 0.00 0.00 0.00 1.62 8.42总的下滑力 = 905.809(kN)总的抗滑力 = 1404.302(kN)土体部分下滑力 = 905.809(kN)土体部分抗滑力 = 1404.302(kN)筋带在滑弧切向产生的抗滑力 = 0.000(kN)筋带在滑弧法向产生的抗滑力= 0.000(kN)。
路基边坡稳定性分析本设计计算内容为广西梧州绕城高速公路东段k15+400~k16+800路段中出现的最大填方路段。
该路堤边坡高22m,路基宽26m,需要进行边坡稳定性验算。
1.确定本设计计算的基本参数本段路段路堤边坡的土为粘性土,根据《公路路基设计规范》,取土的容重γ=18.5kN/m³,粘聚力C=20kpa,内摩擦角C=24º,填土的内摩擦系数ƒ=tan24º=0.445。
2.行车荷载当量高度换算高度为:25500.8446(m)5.512.818.5NQhBLλ⨯===⨯⨯h0—行车荷载换算高度;L—前后轮最大轴距,按《公路工程技术标准》(JTG B01-2003)规定对于标准车辆荷载为12.8m;Q—一辆车的重力(标准车辆荷载为550kN);N—并列车辆数,双车道N=2,单车道N=1;γ—路基填料的重度(kN/m3);B—荷载横向分布宽度,表示如下:(N1)m dB Nb=+-+式中:b—后轮轮距,取1.8m;m—相邻两辆车后轮的中心间距,取1.3m;d—轮胎着地宽度,取0.6m。
3. Bishop法求稳定系数K3.1 计算步骤:(1)按4.5H 法确定滑动圆心辅助线。
由表查得β1=26°,β2 =35°及荷载换算为土柱高度h0 =0.8446(m),得G点。
a .由坡脚A 向下引竖线,在竖线上截取高度H=h+h0(h 为边坡高度,h0 为换算土层高)b.自G 点向右引水平线,在水平线上截取4.5H,得E 点。
根据两角分别自坡角和左点作直线相交于F 点,EF 的延长线即为滑动圆心辅助线。
c.连接边坡坡脚A 和顶点B ,求得AB 的斜度i=1/1.5,据此查《路基路面工程》表4-1得β1,β2。
图1(4.5H 法确定圆心)(2)在CAD 上绘出五条不同的位置的滑动曲线 (3)将圆弧范围土体分成若干段。
(4)利用CAD 功能读取滑动曲线每一分段中点与圆心竖曲线之间的偏角αi (圆心竖曲线左侧为负,右侧为正)以及每分段的面积S i 和弧长L i ; (5)计算稳定系数:首先假定两个条件:a,忽略土条间的竖向剪切力X i 及X i+1 作用;b,对滑动面上的切向力T i 的大小做了规定。
岩质边坡稳定性计算
1计算方法
按《建筑边坡工程技术规范》(GB50330-2013)等有关规程规范,对各优势节理与边坡面采用赤平投影稳定性分析,采用理正岩土计算软件进行计算,根据计算结果,部分结构面与边坡面组合计算是稳定的,对于其他可能产生滑动的结构面再采用三维楔形体稳定性分析,计算出安全系数。
2计算参数的选取
根据岩体结构面特征,结合相关规范,边坡主要地层计算指标如下表9:
边坡地层计算参数表9
注:中风化花岗岩的抗剪强度指标为结构面抗剪强度,其它抗剪强度指标均为直接快剪指标。
3计算结果及评价
根据本次计算结果,按照《建筑边坡工程技术规范》(GB50330-2013)等有关规范规程对边坡稳定性验算,其计算结果详见表10:
边坡稳定性计算结果表10
根据计算结果,现有状态下边坡岩体是整体稳定的。
影响边坡安全的主要因素是边坡有一组优势节理裂隙(48°∠24°)影响边坡的稳定性;边坡危岩受雨水、温度等环境因素以及岩体结构面充填物软化、膨胀等因素影响易发生崩塌滑落。
书山有路勤为径,学海无涯苦作舟
边坡稳定性计算极限平衡计算法的平面形计算法
一、判别准则和要求
构成平面形滑坡条件为:滑坡走向和倾向须与边坡面走向倾向一致,即滑面具有顺坡面方向;滑面倾角应小于边坡角而大于滑面内摩擦角;滑面须在坡脚处出露于坡面上;两侧面应脱开。
此类型滑坡当边坡有张裂隙存在时,则需考虑张裂隙存在的位置。
二、边坡稳定性系数计算
此类型滑坡,有边坡上无张裂隙和有张裂隙两种情况,如图1、2 和3 所示。
图1 坡体内无张裂隙边坡图2 坡面上有张裂隙边坡图3 坡面上有张裂隙边坡
几何要素几何要素几何要素
(一)稳定系数计算
当边坡体内无张裂隙,但滑动面上充水时(如图1),稳定系数K 值可用公式1 计算
(1)
当边坡体内存有不同位置和不同深度的张裂隙以及张裂隙不同充水深度的条件下(如图2,图3),稳定系数可用公式2 计算。
(2)
(二)参数计算
坡体内无张裂隙时:。
一.边坡稳固性盘算办法在边坡稳固盘算办法中,平日采取整体的极限均衡办法来进行剖析.依据边坡不合决裂面外形而有不合的剖析模式.边坡掉稳的决裂面外形按土质和成因不合而不合,粗粒土或砂性土的决裂面多呈直线形;细粒土或粘性土的决裂面多为圆弧形;滑坡的滑动面为不规矩的折线或圆弧状.这里将重要介绍边坡稳固性剖析的基起源基本理以及在某些鸿沟前提下边坡稳固的盘算理论和办法.(一)直线决裂面法所谓直线决裂面是指边坡损坏时其决裂面近似平面,在断面近似直线.为了简化盘算这类边坡稳固性剖析采取直线决裂面法.能形成直线决裂面的土类包含:均质砂性土坡;透水的砂.砾.碎石土;重要由内摩擦角掌握强度的填土.图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β ,土的容重为γ ,抗剪度指标为c . φ .假如倾角α的平面AC面为土坡损坏时的滑动面,则可剖析该滑动体的稳固性.沿边坡长度偏向截取一个单位长度作为平面问题剖析.已知滑体ABC重 W ,滑面的倾角为α ,显然,滑图9-1 砂性边坡受力示意图面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分离为:T=W · sina和则此时边坡的稳固程度或安然系数可用抗滑力与下滑力来暗示,即为了包管土坡的稳固性,安然系数F s 值一般不小于 1.25 ,特别情形下可许可减小到 1.15 .对于C=0 的砂性土坡或是指边坡,其安然系数表达式则变成从上式可以看出,当α =β时,F s 值最小,解释边坡概况一层土最轻易滑动,这时当 F s =1时,β=φ,标明边坡处于极限均衡状况.此时β角称为休止角,也称安眠角. 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型.这类滑坡滑动面的深度与长度之比往往很小.当深长比小于 0.1时,可以把它当作一个无穷边坡进行剖析.图 9-2暗示一无穷边坡示意图,滑动面地位在坡面下H深度处.取一单位长度的滑动土条进行剖析,感化在滑动面上的剪应力为,在极限均衡状况时,损坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳固系数.经由过程稳固因数可以肯定α和φ关系.当c=0 时,即无粘性土.α =φ ,与前述剖析雷同.二圆弧条法依据大量的不雅测标明,粘性土天然山坡.人工填筑或开挖的边坡在损坏时,决裂面的外形多呈近似的圆弧状.粘性土的抗剪强度包含摩擦强度和粘聚强度两个构成部分.因为粘聚力的消失,粘性土边坡不会像无粘性土坡一样沿坡面概况滑动.依据土体极限均衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,外形近似于圆柱面.是以,在工程设计中常假定滑动面为圆弧面.树立在这一假定上稳固剖析办法称为圆弧滑动法和圆弧条分法.1. 圆弧滑动法1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法剖析边坡的稳固性,今后该法在列国得到广泛运用,称为瑞典圆弧法.图 9 - 3 暗示一均质的粘性土坡. AC 为可能的滑动面, O为圆心, R 为半径.假定边坡损坏时,滑体ABC在自重W 感化下,沿AC绕O 点整体迁移转变.滑动面 AC 上的力系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应当包含由粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里假定φ= 0 .边坡沿AC的安然系数F s 用感化在 AC面上的抗滑力矩和下滑力矩之比暗示,是以有这就是整体圆弧滑动盘算边坡稳固的公式,它只实用于φ= 0 的情形.图9-3 边坡整体滑动 2. 瑞典条分法前述圆弧滑动法中没有斟酌滑面上摩擦力的感化,这是因为摩擦力在滑面的不合地位其偏向和大小都在转变.为了将圆弧滑动法运用于φ> 0 的粘性土,在圆弧法剖析粘性土坡稳固性的基本上,瑞典学者 Fellenius 提出了圆弧条剖析法,也称瑞典条分法.条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分离求感化于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳固安然系数.采取分条法盘算边坡的安然系数F ,如图 9 - 4 所示,将滑动土体分成若干土条.土条的宽度越小,盘算精度越高,为了防止盘算过于繁琐,并能知足设计请求,一般取宽为 2 ~ 6m 并应选择滑体外形变休和土层分界点作为分条的界线.于随意率性第 i条上的感化力如下.图9-4 瑞典条分法(1)土条的自.个中γ 为土的容得, 为土条的断面面积.将沿其断面积的形心感化至圆弧滑面上并分化成垂直滑面的法向分力和切于滑面的切向分力,由图 9 - 4 ( b )可知:显然, 是推进土体下滑的力.但假如第 i 条们于滑弧圆心铅垂线的载侧(坡脚一边),则起抗滑感化.对于起抗滑感化的切向分力采取符号 T ′暗示.因感化线能过滑弧圆心 O 点力矩为零,对边坡不起滑动感化,但决议着滑面上抗剪强度的大小.(2)滑面上的抗滑力 S ,偏向与滑动偏向相反.依据库仑公式应有S=N i tanφ+cl i .式中l i 为第i条的滑弧长.(3)土条的两个正面消失着条块间的感化力.感化在 i条块的力,除重力外,条块正面 ac和bd 感化有法向力P i . P i+1 ,切向力H i . H i+1 .假如斟酌这些条间力,则由静力均衡方程可知这是一个超静定问题.要使问题得解,由两个可能的门路:一是摈弃刚体均衡的概念,把土当做变形体,经由过程对土坡进行应力变形剖析,可以盘算出滑动面上的应力散布,是以可以不必用条分法而是用有限元办法.另一门路是仍以条分法为基本,但对条块间的感化力作一些可以接收的简化假定.Fellenius 假定不计条间力的影响,就是将土条两侧的前提力的合力近似地算作大小相等.偏向相反.感化在同感化面上.现实上,每一土条两侧的条间力是不服衡的,但经验标明,土条宽度不大时,在土坡稳固剖析中,疏忽条间力的感化对盘算成果的影响不明显.将感化在各段滑弧上的力对滑动圆心取矩,并分离将抗滑感化.下滑感化的力矩相加得出用在全部滑弧上的抗滑力矩以及滑动力矩的总和,即将抗滑力矩与下滑力矩之比界说为土坡的稳固安然系数,即这就是瑞典条分法稳固剖析的盘算公式.该法运用的时光很长,积聚了丰硕的工程经验,一般得到的安然系数偏低,即偏于安然,故今朝仍然是工程上经常运用的办法.(三)毕肖普法从前述瑞典条分法可以看出,该办法的假定不是异常准确的,它是将不服衡的问题按极限均衡的办法来斟酌并且未能斟酌有用应力下的强度问题.跟着土力学学科的不竭成长,许多学者致力于条分法的改良.一是侧重摸索最安全滑地位的纪律,二是对根本假定作些修正和填补.但直到毕肖普( A.N.Bishop )于 1955 年担出了安然系数新界说,条分法这五办法才产生了质的飞跃.毕肖普将边坡稳固安然系数界说为滑动面上土的抗剪强度τ f 与现实产生的剪应力τ之比,即(9-7)这一安然系数界说的焦点在于一是可以或许充分斟酌有用应力下的抗剪老是;二是充分斟酌了土坡稳固剖析中土的抗剪强度部分施展的现实情形.这一概念不公使其物理意义加倍明白,并且运用规模更广泛,为今后非圆弧滑动剖析及土条分界面上条间力的各类斟酌方法供给了有得前提.由图 9 - 5 所示圆弧滑动体内掏出土条i进行剖析,则土条的受力如下:1.土条重W i 引起的切向反力T i 和法向反力N i ,分离感化在该分条中间处2.土条的侧百分离感化有法向力P i . Pi+1 和切向力H i . H i+1 .由土条的竖向静力均衡前提有∑ F z ,即图9-5 毕肖普法条块感化力剖析(9-8)当土条未损坏时,滑弧上土的抗剪强度只施展了一部分,毕肖普假定其什与滑面上的切向力相均衡,这里斟酌安然系数的界说,且ΔH i =H i+1 -H i 即(9-9)将( 9 - 9 )式代科( 9 - 8 )式则有令(9-10)则(9-11)斟酌全部滑动土体的极限均衡前提,些时条间力P i 和 H i 成对消失,大小相等.偏向相反,互相抵消.是以只有重力W i 和切向力T i 对圆心产生力矩,由力矩均衡知(9-12)将( 9 - 11 )式代入( 9 - 9 )式再代入( 9 - 12 )式,且d i =Rsinθ i ,此外,土条宽度不大时, b i =l i cosθ i ,经整顿简化可行毕肖普边坡稳固安然系数的广泛公式(9-13)式中ΔH i 仍是未知量.毕肖普进一步假定ΔH i =0 于是上式进一步简化为(9-14)假如斟酌滑面上孔隙水压力 u 的影响并采取有用应力强度指标,则上式可改写为(9-15)从式中可以看出,参数m θi 包含有安然系数 F s ,是以不克不及接求出安然系数,而需采取试算法迭代求解F s 值.为了便于迭代盘算,已编制成m θ~θ关系曲线,如图 9 - 6 所示.试算时,可先假定 F s = 1.0 ,由图 9 - 6 查出各θ i所对应的值.代入( 9 - 14 )式中,求得边坡的安然系数 F s ′.若 F s ′与F s 之差大于划定的误差,用 F s ′查m θi ,再次盘算出安然系数 F s 值,如是重复迭代盘算,直至前后两次盘算出安然系数F s ′值,如是重复迭代盘算,直至前后两次盘算的安然系数异常接近,知足划定精度的请求为止.平日迭代老是收敛的,一般只要 3 ~ 4次即可知足精度.与瑞典条分法比拟,简化毕肖普法是在不斟酌条块间切向力的前提下,知足力多边形闭合前提,就是说,隐含着条块间有程度力的感化,固然在公式中程度感化力并未消失.所以它的特色是:(1)知足整体力矩均衡前提;(2)知足各条块力的多边形闭合前提,但不知足条块的力矩均衡前提;(4)假设条块间感化力只有法向力没有切向力;(4)知足极限均衡前提.毕肖普法因为斟酌了条块间程度力的感化,得到的安然系数较瑞典条分法略高一些.。
不同滑面形态的边坡稳定性计算方法边坡稳定性计算是土木工程中的重要环节,它涉及到不同滑面形态的边坡稳定性评估与设计。
下面将介绍几种常见的边坡滑体形态及其稳定性计算方法。
滑动是边坡稳定性分析中最常见的问题之一、滑动滑面可以分为平面滑动、圆弧滑动和坡面滑动三种形式。
平面滑动是指边坡的滑动面为一平面,一般采用公式法、杆件法或有限元法进行计算。
圆弧滑动是指边坡的滑动面为一圆弧,在计算时可以根据边坡的几何特征选用适当的方法进行计算,如刚性圆弧法、弹性圆弧法、位移法等。
坡面滑动是指边坡的滑动面为整个坡面。
常用方法有位移法、有限元法、数值积分法等。
崩塌是边坡灾害中一种较为常见的形式,崩塌滑面多为具有一定倾角的曲线面。
常用的崩塌稳定性计算方法有刚性滑球法、几何分析法、有限元法等。
刚性滑球法是将崩塌土体抽象为一个刚性滑球,通过对滑球受力平衡方程进行求解,判断边坡的稳定性。
几何分析法是根据崩塌体的几何特征,考虑土体的剪切面、滑动平面和倾倒面的相互关系,进行崩塌稳定性分析。
有限元法是一种计算机辅助的稳定性分析方法,通过划分边坡的有限元网格,在计算过程中考虑土体的抗剪强度和应力状态,评估边坡的稳定性。
滑筒状滑动面是指边坡的滑动面为一个圆柱体,滑坡以圆柱滑动面发生滑动。
滑筒稳定性常用的计算方法有刚性滑筒法、弹塑性滑筒法、有限元法等。
刚性滑筒法是将滑筒抽象为刚体,建立滑筒的受力平衡方程进行计算。
弹塑性滑筒法是在刚性滑筒法的基础上考虑土体的变形与抗剪强度,采用弹塑性力学原理进行计算。
有限元法是一种数值计算方法,通过对滑筒进行有限元离散,求解滑筒的应力与变形,进而判断边坡的稳定性。
综上所述,不同滑面形态的边坡稳定性计算方法包括滑动稳定性计算方法、崩塌稳定性计算方法和滑筒稳定性计算方法。
根据边坡的具体形态,可选择合适的方法进行稳定性分析。
30米高边坡稳定计算书全文共四篇示例,供读者参考第一篇示例:30米高边坡稳定计算书一、工程基本资料:工程名称:某某工程边坡稳定计算工程地点:某某市工程规模:30米高边坡二、边坡稳定计算依据:1. 《公路岩土工程设计规范》(JTG D30-2014)2. 《地质灾害防治工程技术规范》(GB 50262-2017)三、边坡工程简介:某某工程位于某某市,边坡高度为30米,采用自然坡形态。
工程处于山区地质环境,地质条件较为复杂,存在一定的地质灾害风险,因此需要对边坡进行稳定计算,确保工程施工和使用安全。
四、边坡稳定计算步骤:1. 地质勘察:通过地质勘察,获取边坡的地质信息和岩土参数,包括地层分布、岩石性质、倾角、节理裂隙分布等。
2. 边坡稳定性分析:采用土力学理论和工程力学方法,对边坡进行稳定分析,确定最不利工况下的边坡稳定性。
3. 边坡设计:根据边坡稳定性分析结果,设计相应的边坡支护和加固措施,确保边坡稳定。
4. 施工监测:在施工过程中,对边坡进行实时监测,及时发现和处理边坡变形异常情况,确保工程施工安全。
五、边坡稳定计算内容:1. 边坡稳定性分析:采用土力学理论和工程力学方法,计算边坡的稳定性指标,包括安全系数、抗滑稳定系数、抗倾覆稳定系数等。
2. 边坡荷载计算:根据边坡的设计荷载及地质条件,计算边坡承载能力和变形。
3. 边坡支护设计:根据边坡稳定性分析结果,设计相应的边坡支护结构,包括挡土墙、锚杆、钢筋混凝土桩等。
4. 边坡排水设计:设计边坡的排水系统,有效降低边坡土体含水量,提高边坡稳定性。
5. 边坡监测方案:制定边坡施工和使用期间的监测方案,对边坡变形及时监测,确保边坡稳定。
六、边坡稳定计算结果:根据边坡稳定性分析,边坡在设计荷载作用下,安全系数满足要求,边坡稳定性良好。
设计的边坡支护和加固措施可以有效提高边坡的稳定性,确保工程施工和使用安全。
七、结论与建议:通过本次边坡稳定计算,对边坡的稳定性进行了全面分析和设计,提出了适当的支护和加固措施。
一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。
为了简化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时图9-1 砂性边坡受力示意图当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
主厂房土方开挖技术方案51 / BPCC-Ⅲ-BG-TJ-002
附件四:边坡稳定性计算书
1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m
天然放坡支护
----------------------------------------------------------------------
]
[ 基本信息----------------------------------------------------------------------
----------------------------------------------------------------------
]
[ 放坡信息----------------------------------------------------------------------
----------------------------------------------------------------------
]
[ 超载信息---------------------------------------------------------------------- 长度形式距坑边距作用宽度作用深度超载值类型超载
主厂房土方开挖技术方案52-BG-TJ-002 / BPCC-Ⅲ
20.0001---------------
----------------------------------------------------------------------
]
[ 土层信息----------------------------------------------------------------------
----------------------------------------------------------------------
]
土层参数[
----------------------------------------------------------------------
----------------------------------------------------------------------
[ 整体稳定验算 ]
----------------------------------------------------------------------
: 天然放坡计算条件计算方法:瑞典条分法应力状态:总应力法: 0.00m 基坑底面以下的截止计算深度: 5.00m 基坑底面以下滑裂面搜索步长: 1.00m 条分法中的土条宽度: 天然放坡计算结果圆心坐标圆心坐标半径整体稳定道号.
主厂房土方开挖技术方案53-BG-TJ-002 / BPCC-Ⅲ
H=6.5
天然放坡支护
----------------------------------------------------------------------
]
基本信息[
----------------------------------------------------------------------
----------------------------------------------------------------------
]
[ 放坡信息---------------------------------------------------------------------- 主厂房土方开挖技术方案5Ⅲ-BG-TJ-002 / 4BPCC-
----------------------------------------------------------------------
[ 超载信息 ]
----------------------------------------------------------------------
10.000---1------------
----------------------------------------------------------------------
]
土层信息[
----------------------------------------------------------------------
----------------------------------------------------------------------
]
土层参数[
----------------------------------------------------------------------
---------------------------------------------------------------------- [ 整体稳定验算 ]
----------------------------------------------------------------------
: 天然放坡计算条件计算方法:瑞典条分法应力状态:总应力法.
主厂房土方开挖技术方案5Ⅲ-BG-TJ-002 / 5BPCC-
基坑底面以下的截止计算深度: 0.00m
基坑底面以下滑裂面搜索步长: 5.00m
条分法中的土条宽度: 1.00m
天然放坡计算结果:。