高中数学学业水平综合训练(含答案)
- 格式:doc
- 大小:88.50 KB
- 文档页数:8
高中数学学业水平复习练习一 I 集合与函数(一)1. 已知 S ={1 , 2, 3, 4, 5}, A ={ 1 , 2}, B ={ 2 , 3, 6},则 A B ________ , A B _________ , (C S A) B __________ .2. 已知 A {x| 1 x 2}, B {x|1 x 3},则 A B ____________________ , A B _________3. 集合{a,b,c,d}的所有子集个数是 _____ ,含有2个元素子集个数是 _______ .4. ______________________________________ 图中阴影部分的集合表示正确的有6. ____________________________ 下列表达式正确的有7. 若{1,2} A {1,2,3,4},则满足A 集合的个数为 __________ . 8. 下列函数可以表示同一函数的有 _________ . (A)f(x) x, g(x) ( .x)2(B) f (x) x, g(x) . x 21 X 0 f — ' ------ . --------------------(C)f(x) -,g(x)(D) f(x) x x 1,g(x) x(x 1)xx9. 函数f(x) V x —2 (3 x 的定义域为 ________________ .110. 函数f (x)的定义域为 ________yl g x11. _____________________________ 若函数 f (x) x 2,则f (x 1) . 12. 已知 f (x 1) 2x 1,则f (x)______ .(A)C u (A B) (B)C U (A B)(C) (C U A) (C u B)(D) (C U A) (C u B)5.已知 A {( x, y) | xy 4}, B {( x, y) | xy 6},贝V A B =(A) A B A B A (B) A B A(C) A (C u A) A (D) A (C U A) U13. 已知f(JX) x 1,贝U f(2) _____ .X x 014. 已知f(x) ' ,贝U f(0) ____ f[ f( 1)] ____ .2, x 0215. 函数y -的值域为____________ .x16. 函数y x2 1, x R的值域为______________ .17. 函数y x2 2x,x (0,3)的值域为_______________ .118. 将函数y -的图象向左平移2个单位,再向下平移1个单位,则对应x图象的解析式为__________ .练习二|集合与函数(二)1. 已知全集1={1,2,3, 4,5,6},A={1,2,3,4},B={3,4,5,6},那么C I(A AB)=( ).A. {3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.①2. 设集合M ={1,2,3,4,5},集合N={ x| x2 9},M AN=( ).A.{x| 3x3}B.{1,2}C.{1,2,3}D.{x|1 x 3}3. 设集合M={ —2,0,2},N={0},则().A. N 为空集B. N € MC. N MD. M N4. 函数y= lg(x2 1)的定义域是______________________ .5. 已知函数f(J x)=log 3(8X+7),那么f(?等于 _____________________ .6. 与函数y= x有相同图象的一个函数是().A.y= x2B. y = —C. y= a log a x (a>0, a 丰 1)D. y= log a a x (a>0, ax7. 在同一坐标系中,函数y=log°.5X与y= log2 x的图象之间的关系是().A.关于原点对称B.关于x 轴对称C.关于直线y=1对称.D.关于y 轴对称)上是增函数的是 ).1 1C. y=( 2)xD.y= log 0.3 -B. 在区间(一s, 0)上的减函数 D. 在区间(0, + s )上的减函数B.是奇函数,但不是偶函数 D.不是奇函数,也不是偶函数11. 设函数 f(x)=(m — 1)x 2+( m+1) x+3 是偶函数,贝U m= _______ . 12. 函数 y=log 3|x| (x € R 且 x 工 0)( ).A. 为奇函数且在(—s, 0)上是减函数B. 为奇函数且在(—s, 0)上是增函数C. 是偶函数且在(0, + s )上是减函数D. 是偶函数且在(0 , + s )上是增函数13. 若f(x)是以4为周期的奇函数,且f( — 1)=a(a 工0),贝(5)的值等于( ).A. 5 aB. — aC. aD. 1 — a114. 如果函数y= log a x 的图象过点(-,2),则a= _____________ .9 2115. 实数 273 -2 g 23 • lo 旷 +lg4+2lg5 的值为 ________________ .88. 下列函数中,在区间(0 , + sA.y= — x 2B.y= x 2 — x+29. 函数 y= log 2( x)是().A.在区间(一s, 0)上的增函数 C.在区间(0, + s )上的增函数3x -1 10. 函数 f(x)= ( ).3x +1A.是偶函数,但不是奇函数 C.既是奇函数,又是偶函数16. 设a=log 26.7, b=log 0.24.3, c=log 0.25.6,则a, b, c 的大小关系为( )17•若log! x 1,则x的取值范围是().21 1 1A. xB. 0 xC.xD. x 02 2 2练习三|立体几何(一)1. 下列条件,可以确定一个平面的是():(A)三个点(B)不共线的四个点(C) 一条直线和一个点(D)两条相交或平行直线2. 判断下列说法是否正确:[](1)如果两直线没有公共点,则它们平行[](2)分别位于两个平面内的两条直线是异面直线[](3)不在任何一个平面的两条直线异面[](4)过空间中一点有且只有一条直线和已知直线平行[](5)若a//b,b ,则a//[](6)如果一直线和一平面平行,则这条直线和平面的任意直线平行[](7)如果一条直线和一个平面平行,则这条直线和这个平面内的无数条直线平行[](8)若两条直线同时和一个平面平行,则这两条直线平行[](9)若a// ,b ,且a,b共面,则a//b[](10)两个平面的公共点的个数可以是0个,1个或无数[](11)若a ,b , // ,则a//b[](12)若a// ,a// ,贝U //A. b< c< aB. a< c< bC. a< b<cD. c< b< a[](13)若一个平面内的无数条直线和另一个平面平行,则这两个平面平行[](14)若// ,a ,则a//[](15)若一个平面同两个平面相交且它们的交线平行,则两平面平行[](16)过平面外一点,有且只有一个平面和已知平面平行[](17)如果一直线垂直于一个平面内的所有直线,则这条直线垂直于这个平面[](18)过一点有且只有一条直线和已知平面垂直[](19)若,a ,b ,,则 a b[](20)若a , ,则a[](21)若,/,贝U[](22)垂直于同一条直线的两个平面平行[](23)过平面外一点有且只有一个平面与已知平面垂直练习四立体几何(二)1•已知AB为平面的一条斜线,B为斜足,AO ,O为垂足,BC为平面内的一条直线, ABC 60 , OBC 45,则斜线AB与平面所成的角的大小为__________________2. 在棱长均为a的正四棱锥S ABCD中,(1) 棱锥的高为 ______ .(2) 棱锥的斜高为 _________ .(3) SA与底面ABCD的夹角为__________ .(4) 二面角S BC A的大小为____________3. _____________________________________________________________________________ 已知正四棱锥的底面边长为4近,侧面与底面所成的角为45,那么它的侧面积为 _________________4. 在正三棱柱ABC A1BQ1中,底面边长和侧棱长均为a,取AA i的中点M,连结CM,BM,则二面角M BC A的大小为5 •已知长方体的长、宽、高分别是2、3、4,那么它的一条对角线长为 ______ .6. 在正三棱锥中,已知侧面都是直角三角形,那么底面边长为a时,它的全面积是______ .7. 若球的一截面的面积是36,且截面到球心的距离为8,则这个球的体积为_________ ,表面积为_________ .8. 半径为R球的内接正方体的体积为___________ .练习五I立体几何(三)解答题:1. 在四棱锥P ABCD中,底面是边长为a的正方形,侧棱PD a ,PA PC 、2a.⑴求证:PD 平面ABCD ;⑵求证:PB AC ;(3) 求PA与底面所成角的大小;(4) 求PB与底面所成角的余弦值2. 在正四棱柱ABCD AB.CQ,中,AB=1 , AA, 2 .(1) 求BC i与平面ABCD所成角的余弦值;(2) 证明:AC i BD ;(3) 求AC i与平面ABCD所成角的余弦值.3. 在直三棱柱ABC-A i B i C i 中,D 是AB 的中点,AC = BC=2 , AA i = 2. 3 .(1)求证:A i D DC ; (2)求二面角A i CDA的正切值;⑶求二面角A i BC A的大小.住* 1\* i\ \ :\ \ :\ \ *\/ BA D4. 四棱锥P-ABCD的底面是正方形,PD丄底面ABCD,且BD = 6 , PB与底面所成角的正切值为一66(1) 求证:PB丄AC ;(2) 求P点到AC的距离.练习六解析几何1. 已知直线I的倾斜角为135,且过点A( 4,1),B(m, 3),则m的值为__________ .2. 已知直线I的倾斜角为135,且过点(1,2),则直线的方程为________________ .3. 已知直线的斜率为4,且在x轴上的截距为2,此直线方程为_______________4. 直线x J3y 2 0倾斜角为__________________ .5. 过点(2,3)且平行于直线2x y 5 0的方程为________________________.过点(2,3)且垂直于直线2x y 5 0的方程为________________________.6. 已知直线l「x ay 2a 2 O,D:ax y 1 a 0,当两直线平行时,a= __________________ 当两直线垂直时,a= ______ .7. 设直线l i: 3x 4y 2 0」2:2X y 2 0」3:3x 4y 2 0,则直线l i与J的交点到I3的距离为_____________ .8. 平行于直线3x 4y 2 0且到它的距离为1的直线方程为__________________ .练习七|不等式1. 不等式|1 2x| 3的解集是______________ .2. 不等式x2 x 2 0的解集是 _______________ .3. 不等式x2 x 1 0的解集是 _______________ .4. 不等式口0的解集是________________ .3 x5. 已知不等式x2 mx n 0的解集是{x | x 1,或x 2},则m和n的值分别为_____________6. 不等式x2 mx 4 0对于任意x值恒成立,则m的取值范围为________________ .7. _______________________________________________________ 已知2 a 5, 4 b 6,则a b的取值范围是 ____________________________________________________则b a的取值范围是 _____________ -的取值范围是 ______________a8. 已知a,b 0且a b 2,则ab的最值为.9. 已知m 0,则函数y 2m —的最值为_此时mm10 . .若x 0,则函数y1x -的取值范围是(x).A.( , 2]B. [2, )C. ( , 2] [2, )D. [ 2,2]6 211.若x 0,则函数y 4 p 3x 2有().x练习八 平面向量1.已知a,b满足|a !1,|b| 4,a b2,则a 与b 的夹角为()A. 6B. 4C. 3D. 22.已知 a (2,1), a b (1,k ),若 a b,则实数k ----------------- .3.若向量 a =(1,1), b=(i, — i ),c=( — 1,2),则 c=().1 3 1 3 3 1 31」A — _ a + _ bB _ a — _ bC _ a — _ bD — _ a + _ b2 2 ' 2 2 ' 2 2 ' 2 24. 若|a |=1 , |b|=2 , c = a + b ,且c 丄a ,则向量a 与b 的夹角为(). A.30oB.60oC.120oD150o5. 已知向量a,b 满足同1,N2, a 与b 的夹角为60 ,则b 耳 -------------------------- .数列(一)1. 已知数列{如中,去1 , an 1 2an 1,则a 1 ___________________ .2.-81是等差数列 -5 , -9 , -13 ,•的第( )项.3. 若某一数列的通项公式为an 1 4n ,则它的前50项的和为 _______________4. 等比数列2,6,18,54,…的前n 项和公式% = ______________ .5. _____________________________________________ 在等差数列{an }中,a6 5, a3 a8 5,则S9_______________________________________________A.最大值4 6、. 2B.最小值4 62C.最大值4 6.2D.最小值4 6 26.2 1与、21的等比中项为7.若a ,b ,c成等差数列,且a b c 8,则b=________________8. 等差数列{an}中,a3+ a4+ a5+ a6+ a7=150 ,则a2+a8=9. 在等差数列{an}中,若a5=2 , a10=10,则a15= _______ .1 3 9 27 8110. 数列1,5,9, 13,17,…的一个通项公式为 __________ .11. 在等比数列中,各项均为正数,且3236 9,则log 1(838485) = _________________ .312. 等差数列中,a1 24,d 2,则Sn= _____________ .13. 已知数列{ a n }的前项和为S n = 2n 2 -n,则该数列的通项公式为 ________ .14. 已知三个数成等比数列,它们的和为14,它们的积为64,则这三个数练习十数列(二)1. 在等差数列{9n}中,95 8,前5项的和S5 10,它的首项是—公差2. _____________________________________________________ 在公比为2的等比数列中,前4项的和为45,则首项为______________________________________3.在等差数列{3n}中,已知9a2 a3 a4 a5 15,则3284 =12. _____________________________________________________________在各项均为正数的等比数列中,若aia5 5,则log5(a2a3a4) ____________________________________ 练习十一三角函数(一)1. 已知角x的终边与角30的终边关于y轴对称,则角x的集合可以表示为2. 在360 ~ 720之间,与角175终边相同的角有______________________ .3. 在半径为2的圆中,弧度数为一的圆心角所对的弧长为 _________ 扇形面积为____________34. 已知角的终边经过点(3,—4),贝U sin = ___ , cos = ________ ,tan = _______ .5. 已知sin 0且cos 0,则角_______ 一定在第限.35.已知sin11,则sin4cos 46. 计算:7cos12sinO 2tanO cos2 137. 已知tan ,且,则sin3 29. 化简:旦—鯉乙丄sin ( )cos ( )练习十二三角函数(二)1. _______________________ 求值: cos165 = ____ ,tan( 15 )12. 已知cos , ________ 为第三象限角,则sin (y ),3. ___________________________________________________________ 已知tanx,tany 是方程x 26x 7 0的两个根,贝U tan(x y) ___________________________ , tan 65tan5V3 tan65 tan 5sin15 cos15 , sin 2— cos 2 —2 214.已知sin1,为第二象限角,则sin2 _sin 70 cos10 sin 20 sin 170 cos2 = _________, cos8.已知tan2,则江 cos 2cossincos <3 sin ___________ ,1 tan15 1 tan155 36•在 ABC 中'若 cos A i3,sin B 5,则 sin C7.已知tan 2, tan 3,且,都为锐角,则 8.已知sincosi ,则sin2 —-.15 14比较大小:cos 515 —cos530, sin (肓)—sin (可)6. _______________________________________________________________________ 要得到函数y 2sin (2x 才)的图象,只需将y 2sin2x 的图象上各点 ___________________________7. 将函数y cos2x 的图象向左平移-个单位,得到图象对应的函数解析式为8.已知cos ,(0 _______________________ 2 ),贝U 可能的值有 .练习十四|三角函数(四)101. 在0~2范围内,与10终边相同的角是 _________________ .3 2. 若 sin a <且 cos a <0,贝U a 为第_______ 限角.三角函数(三)1.函数ysin (x7)的图象的一个对称中心是().A. (0,0) 3 3B. G 1)C.(才°D.(才。
高中数学学业水平综合训练(1)1.已知集合M={0,2,4},N={1,2,3},P={0,3},则(M∪N)∩P 等于()A.{0,1,2,3,4} B.{0,3} C.{0,4} D.{0}解析:M∪N={0,1,2,3,4},(M∪N)∩P={0,3},故选B.2.函数y=lg(x+1)的定义域是()A.(-∞,+∞) B.(0,+∞)C.(-1,+∞) D.-1,+∞)解析:对数函数要求真数大于0,所以x+1>0,解得x>-1,故选C.3.已知甲:球的半径为1 cm;乙:球的体积为4π3cm3,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:若r=1 cm,由V=43πr3可得体积为43πcm3,同样利用此公式可证必要性也成立.4.已知直线l过点A(1,2),且与直线y=12x+1垂直,则直线l的方程是()A.y=2x B.y=-2x+4 C.y=12x+32D.y=12x+52解析:因为两直线垂直时,斜率互为倒数的相反数(k1k2=-1),所以直线l的斜率k=-2,由点斜式方程y-y0=k(x-x0)可得,y-2=-2(x-1),整理得y=-2x+4,故选B.5.顶点在坐标原点,准线为x=-2的抛物线的标准方程是()A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y解析:因为准线方程为x =-2,所以焦点在x 轴上,且-p 2=-2, 所以p =4,由y 2=2px 得y 2=8x .6.已知三点A (-3,3), B (0, 1),C (1,0),则|AB→+BC →|等于( ) A .5 B .4 C.13+ 2 D.13- 2解析:因为AB→=(3,-2),BC →=(1,-1),所以AB →+BC →=(4,-3), 所以|AB→+BC →|=42+(-3)2=5,故选A. 7.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )A .sin α=-23B .sin(α+π)=23C .cos α=53D .tan α=-52解析:依题意得,r =x 2+y 2=5+4=3,sin α=y r ,cos α=x r , tan α=y x ,所以sin α=-23,cos α=53,tan α=-25=-255, 所以A ,B ,C 正确,D 错误.8.下列等式恒成立的是( ) A.13x =x -23(x ≠0) B .(3x )2=3x 2C .log 3(x 2+1)+log 32=log 3(x 2+3)D .log 313x =-x 解析:13x =x -13(x ≠0),故A 错;(3x )2=32x ,故B 错; log 3(x 2+1)+log 32=log 32(x 2+1),故C 错.9.已知数列{a n }满足a 1=1,且a n +1-a n =2,则{a n }的前n 项和S n 等于( )A .n 2+1B .n 2C .2n -1D .2n -1解析:数列{a n }是以1为首项,2为公差的等差数列,由S n =na 1+n (n -1)2d =n +n (n -1)2·2=n 2,故选B. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,y ≤x ,x +y ≥2,则z =2x +y 的最大值为( )A .3B .5C .9D .10解析:如图,画出可行域,当y =-2x +z 移动到A点时,直线与y 轴的截距z 取得最大值,因为A (3,3),所以z =2x +y 的最大值为9.答案:C11.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )A .(x +2)2+(y +5)2=3 2B .(x +2)2+(y +5)2=18C .(x -2)2+(y -5)2=3 2D .(x -2)2+(y -5)2=18解析:圆的标准方程(x -a )2+(y -b )2=r 2,圆心为C ⎝ ⎛⎭⎪⎫-1+52,8+22=(2,5),半径r =12(5+1)2+(2-8)2=32,所以圆的标准方程为(x -2)2+(y -5)2=18.答案:D12.下列不等式一定成立的是( )A .x +2x ≥2(x ≠0)B .x 2+1x 2+1≥1(x ∈R) C .x 2+1≤2x (x ∈R) D .x 2+5x +6≥0(x ∈R)解析:A 选项中,当x <0时,显然不成立;C 选项中,当x =-1时,显然不成立;D 选项中,当x ∈(-3,-2)时,x 2+5x +6<0,所以不成立;B 选项中,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2(x 2+1)·1x 2+1-1=1(x ∈R),当且仅当x =0时取“=”.答案:B13.已知x >0,且53,x ,15成等比数列,则x =____________. 解析:因为513, x ,15成等比数列,所以x 2=53×15=25,又x >0,所以x =5.14.函数f (x )=sin x cos(x +1)+sin(x +1)cos x 的最小正周期是___________.解析:f (x )=sin x cos(x +1)+sin(x +1)cos x =sin x +(x +1)]=sin(2x +1),所以最小正周期T =2π2=π. 15.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.解析:从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数一共有如下12个基本事件:12,13,14,21,23,24,31,32,34,41,42,43;其中该两位数小于20的共有12,13,14三个,所以该两位数小于20的概率为312=14. 16.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1和F 2在x 轴上,P 为该椭圆上的任意一点,若|PF 1|+|PF 2|=4,则椭圆的标准方程是________.解析:根据焦点在x 轴上可以设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 因为长轴长2a =|PF 1|+|PF 2|=4,离心率e =c a =12, 所以a =2,c =1,b =a 2-c 2=3,所以椭圆的标准方程为x 24+y 23=1. 17.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a cos A =b cos B. (1)证明:△ABC 为等腰三角形;(2)若a =2,c =3,求sin C 的值.(1)证明:因为a cos A =b cos B,所以a cos B =b cos A , 由正弦定理知sin A cos B =sin B cos A ,所以tan A =tan B ,又A ,B ∈(0,π),所以A =B ,所以△ABC 为等腰三角形.(2)解:由(1)可知A =B ,所以a =b =2,根据余弦定理有:c 2=a 2+b 2-2ab cos C ,所以9=4+4-8cos C ,解得cos C =-18, 因为C ∈(0,π),所以sin C >0,所以sin C =1-cos 2C =638. 18.如图,在四棱锥PABCD 中,PA ⊥AB ,PA ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC =2,E 为PC 的中点.(1) 证明:AP ⊥CD ;(2) 求三棱锥PABC 的体积;(3) 证明:AE ⊥平面PCD .(1)证明:因为PA ⊥AB ,PA ⊥AD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,AB ∩AD =A ,所以PA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以AP ⊥CD .(2)解:由(1)可知AP ⊥平面ABC ,所以V P -ABC =13S △ABC ·AP , 又S △ABC =12AB ·BC ·sin ∠ABC =12×2×2×sin 60°=3, 所以V P -ABC =13×3×2=233. (3)证明:因为CD ⊥AP ,CD ⊥AC ,AP ⊂平面APC ,AC ⊂平面APC ,AP ∩AC =A ,所以CD ⊥平面APC ,又AE ⊂平面APC ,所以CD ⊥AE ,由AB =BC =2且∠ABC =60°得△ABC 为等边三角形,且AC =2, 又因为AP =2,且E 为PC 的中点,所以AE ⊥PC ,又AE ⊥CD ,PC ⊂平面PCD ,CD ⊂平面PCD ,PC ∩CD =C , 所以AE ⊥平面PCD .。
2024年高中学业水平合格性考试模拟练习数学学科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共100分,考试时间90分钟.参考公式:柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高.球的体积公式24π3V R =,其中R 表示球的半径.第Ⅰ卷一、选择题:(本大题共15个小题,每小题3分,共计45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}0,1,2,3U =,集合{}0,1,2M =,{}0,2,3N =,则U M N = ð().A .∅B .{}1C .{}2,3D .{}0,1,22.命题“R x ∃∈,()12f x <≤”的否定形式是().A .R x ∀∈,()12f x <≤B .R x ∃∈,()12f x <≤C .R x ∃∈,()1f x ≤或()2f x >D .R x ∀∈,()1f x ≤或()2f x >3.复数1i1i+-等于().A .1B .1-C .i D .i-4.不等式()()120x x --≥的解集为().A .{|}12x x ≤≤B .}1{|2x x x ≤≥或C .{}2|1x x <<D .}1{|2x x x <>或5.坐标平面内点P 的坐标为()sin 5,cos5,则点P 位于第()象限.A .一B .二C .三D .四6.某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则此射手在一次射击中不够8环的概率为().A .0.9B .0.6C .0.4D .0.37.为了得到函数πsin 23y x ⎛⎫=-⎪⎝⎭的图象,可以将函数sin 2y x =的图象().A .向右平移π6个单位B .向右平移π3个单位C .向左平移π6个单位D .向左平移π3个单位8.在△ABC 中,π3A =,3BC =,AB =,则C =().A .π6B .π4或3π4C .3π4D .π49.若l ,m 是两条不同的直线,α是一个平面,l α⊥,则“l m ⊥”是“m α∥”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.下列函数中,周期为π且为偶函数的是().A .sin(22πy x =-B .cos(2)2πy x =--3)C .sin(2πy x =+D .cos()2πy x =+11.三个数3log 2a =,21log 4b =,0.512c -⎛⎫= ⎪⎝⎭之间的大小关系为().A .a c b <<B .a b c <<C .b a c<<D .b c a<<12.一个圆柱的底面直径和高都等于球O 的直径,则球O 与该圆柱的体积之比为().A .18B .16C .12D .2313.如图,在平行四边形ABCD 中,AB a = ,AD b = ,点E 满足13EC AC = ,则DE =().A .2133a b-B .2133a b- C .1233a b- D .1233a b- 14.已知正四面体ABCD ,M 为AB 中点,则直线CM 与直线BD 所成角的余弦值为().A .23B .36C .2121D .4212115.函数()22log 43xf x a x a =+⋅+在区间1,12⎛⎫⎪⎝⎭上有零点,则实数a 的取值范围是().A .12a <-B .32a <-C .3122a -<<-D .34a <-第Ⅱ卷二、填空题:本大题共5个小题,每小题3分,共15分.请将答案填在题中横线上。
可编辑修改精选全文完整版2020年12月河北省普通高中学业水平考试数学试卷(含答案)参考公式:柱体的体积公式:V=Sh(其中S 为柱体的底面面积,h 为高)锥体的体积公式:V=31Sh(其中S 为锥体的底面面积,h 为高) 台体的体积公式:V=)(31''S S S S ++h(其中S ′、S 分别为台体的上、下底面面积,h 为高)球的体积公式:V=π34R 3(其中R 为球的半径) 球的表面积公式:S=4πR 2(其中R 为球的半径)一、选择题 (本题共30道小题,1-10题,每题2分,11-30题,每题3分,共80分,在每小题给出四个选项中,只有一项是符合题目要求) 1.若集合A=N ,B={x ||x |≤1},则A ∩B=A .{0,1}B .{-1,0,1}C .{x|-1≤x ≤1}D .{x|0≤x ≤1} 2.tan120°=A .33-B .33C .3-D .3 3.等差数列{a n}的通项公式为a n =3n-1,则它的公差是A .1B .2C .3D .4 4.已知向量a =(1,-1),b =(-1,2),则|2a +b |=A .1B .2C .3D .4 5.若a>b ,则下列不等式成立的是A . a 2>b 2B .b a>1 C .b a 2121< D . lg(a-b)>0 6.在等差数列{a n }中,a 3=2,a 6+a 10=17,则a 13A .31B .64C .15D .30 7.对任意实数x ,不等式x 2-2x -a ≥0恒成立,则实数a 取值范围是A .a ≥-1B .a ≤-1C .a <-1D .a >-1 8.已知点A(2,-1),B(0,3),则线段AB 的垂直平分线的方程是A .2x 十y -3=0B .2x -y -1=0C .x -2y +1=0D .x +2y -3=0 9.函数f (x )=2x +3x 的一个零点所在的区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.假设某车站每隔5分钟发一班车,若某乘客随机到达该车站,则其等车时间不超过3分钟概率是A .51 B .52 C . 53 D .54 11.已知平面α⊥平面β,α∩B=l ,若直线m ,n 满足m ∥α,n ⊥β,则A .m ∥lB .m ∥nC .m ⊥nD .n ⊥l12.若实数x ,y 满足 则z=x-3y 的最小值是 A .34-B .-10C .-8D .4 13.某几何体的三视图如图所示,则此几何体的体积是A .21B .33C .36D .45 14.若53cos -=α,παπ<<2,则sin α= A .2512 B .2512- C . 2524 D .2524-15.执行如图所示的程序框图,则输出S 的值是A .23B .3C .0D .21 16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若 a tanC= c sinA ,则△ABC 一定是A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形17.函数f (x )=sin(ϕω+x )(ω>0,0<ϕ<π)的图象如图所示,则ω,ϕ的值分别是A .1,8πB .1,85πC .2,4πD .2,43π18.在直角三角形ABC 中,A=90°,AB=2,则AB ·BC =A .-4B .4x+2≥0y ≥x x+2y-2y ≤0C .-8D .819.已知数列{a n }的前n 项和S n ,满足S n =2-a n ,则S 5=A .31B .63C .1631 D .3263 20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若B=60°,a =1,b =3,则c =A .1B .2C .2D .3 21.如图,在三棱柱ABC -A 1B 1C 1中,CA=CB=CC 1,CA ⊥CB ,CC 1⊥底面ABC ,则异面直线AB 1与BC 所成角的余弦值是A .33 B .36 C .22 D .32 22.右面茎叶图表示是甲、乙两人在5次综合测评成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩概率是A .54B .53C .52D .5123.已知函数y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (1)=2,则a =A .-1B .1C .-3D .3 24.若直线x+y+1=0与圆x2+y2-6y+m=0相切,则m=A .1B .17C .9-22D .9+22 25.已知函数f (x )=x 2-2ax -3在区间[2,+∞)上是增函数,则实数a 的取值范围是A .[1,+∞)B .[2,+∞)C .(-∞ ,1 ]D .(-∞ ,2 ] 26.若正数a ,b 满足a +4b =ab ,则a +b 的最小值是A .10B .9C .8D .627.如图,圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱侧面积之比是A .3:2B .2:3C .1:2D .1:128.三角形三条中线的交点称之为三角形的重心,已知G 为△ABC 的 重心,AB =a ,AC =b ,则BG =A .32-a +31b B .31-a -31bC .32-a -31bD .31-a +32b29.过坐标原点O 的直线l 与圆C :4)32(22=+-y x 交于A ,B 两点,若OA OB 2=,A .63±B .33± C .±1 D .3±30.若对函数y =f (x )图象上任意一点A ,在其图象上均存在点B ,使得OA ⊥OB(O 为坐标原点)则称该函数为“好函数”,给出下列4个函数:①f(x)=x1; ②f (x )=x +1; ③f(x)=-x 2+2x +3; ④f (x )=2x 其中“好函数”的个数是A .0B .1C .2D .3二、解答題(本题共3道小题,31题6分,32题7分,33题7分,共20分,解答应写出文字说明、演算步驟或证明过程)31.已知数列{a n }为等比数列,且a 1=1,8a 2-a 5=0(I)求数列{a n }的通项公式;(Ⅱ)求数列{a n +1}的前n 项和S n 。
高中数学学业水平考试试题(满分:100 时量:120分钟)一、选择题:本大题共20小题,每小题2分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1、如果集合{}1->=x x P ,那么A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆02、65cosπ的值等于 A .23 B .23- C .21 D .21- 3、数列0,0,0,0…,0,…A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列4、下列函数中与y=x 是同一个函数的是A .2)(x y = B .xx y 2= C .33x y = D .2x y =5、点(0,5)到直线y=2x 的距离是A .25B .5C .23D .256、直线x+2y+3=0的斜率和在y 轴上的截距分别是 A .21-和-3 B .21和-3 C .21-和23 D .21-和23-7、已知下列四个命题①垂直于同一条直线的两条直线平行 ②垂直于同一条直线的两个平面平行③垂直于同一条直线的一条直线和一个平面平行 ④垂直于同一平面的两条直线平行其中真命题有A .1个B .2个C .3个D .4个8、若x f x=)10(,则f (3)等于 A .lg3 B .log 310 C .103 D .3109、函数x y -=112的值域为 A .{}0>y y B .{}10≠>y y y 且C .RD .{}0≠∈y R y y 且10、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点,则异面直线AC 和MN 所成的角为 A .30° B .45°C .60°D .90°11、满足a=4,b=3和A=45°的△ABC 的个数为 A .0个 B .1个 C .2个 D .无穷多个12、若log 2a+log 2b=6,则a+b 的最小值为 A .62 B .6 C .28 D .1613、关于x 的方程ax 2+2x+1=0至少有一个负的实根的充要条件是 A .0≤a ≤1 B .a ≤1 C .a <1 D .a ≤1且a ≠014、83)x12x (-的展开式中的常数项为A .–28B .–7C .7D .2815、平行于底面的平面截棱锥所得截面的面积与底面面积之比为1:2,则此截面把侧棱分成的两线段的长度比为A .1:2B .1:2C .)12(-:1D .1:416、点A 分有向线段所成的比为21-,则点B 分有向线段所成的比为A .21 B .2 C .1 D .–117、将函数)6x 21cos(y π+=的图象经过怎样的平移,可以得到函数x 21cos y =的图象A .向左平移6π个单位 B .向左平移3π个单位C .向右平移3π个单位D .向左平移12π个单位 18、若不等式02<++b ax x 的解为1<x <2,则不等式ax 2+bx+1<0的解为 A .1<x <3B .x >1或x <–31 C .–31<x <1 D .x <–1或x >31 19、四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法种数为 A .144B .24C .36D .12020、圆心在曲线x 2=2y(x>0)上,并且与抛物线x 2=2y 的准线及y 轴都相切的圆的方程是A .041y 2x y x 22=---+ B .01222=+-++y x y xC .01222=+--+y x y xD .041y x 2y x 22=+--+二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上。
2024年6月福建省普通高中学业水平合格性考试数学试题(考试时间:90分钟;满分:100分)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至3页,第II卷4至6页。
注意事项:1.答题前,考生务必将自己的考生号、姓名填写在试题卷、答题卡上。
考生要认真核对答题卡上粘贴的条形码的考生号、姓名与考生本人考生号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
第II卷用黑色字迹签字笔在答题卡上作答。
在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷和答题卡一并收回。
第Ⅰ卷(选择题57分)一、选择题:本题共19小题,每小题3分,共57分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合A={1,2,3,4},B={0,1,2},则A∩B=A.{1,2}B.{0,1}C.{3,4}D.{2,3}2.已知函数f(x)=lgx,则f(10)=A.1B.0C.10D.23.sin(2π+α)=A.cosαB.sinαC.-cosαD.-sinα4.已知函数y=f(x)在[-1,2]上的图像如图,则函数单调递增区间为A.[0,1]B.[-1,0]C.[1,2]D.[-1,2]5.圆柱的底面半径和高都是1,则该圆柱的体积为A.π3B.π4C.πD.π26.某高中开设7门课,3门是田径,某学生从7门中选一门,选到田径的概率为A.13B.17C.47D.377.函数f(x)=√x−1的定义域为A.{x|x≥-1}B.{x|x≥1}C.{x|x≤-1}D.{x|x≤1}8.已知平面α、β,α//β是α与β无公共点的A.必要不充分条件B.充分不必要条件C.既不充分也不必要条件D.充分必要条件,则cosα为9.已知α是第一象限角,sinα=45A.34B.35C.43D.4510.不等式(x-1)(x-2)<0的解集为A.{x|-2<x<-1}B.{x|1<x<2}C.{x|x≤-1}D.{x|x>2或x<1}11.在正方体ABCD-A1B1C1D1中,异面直线AB,B1D1所成角的大小为A.45∘B.30∘C.90∘D.60∘12.已知向量a=(1,2),b=(m,-1),若a⊥b,则m的值为A.-12B.-2C.2D.12。
人教版a高中数学学业水平试题及答案一、选择题(每题4分,共40分)1. 函数f(x)=2x^2-3x+1的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 直线x=1对称2. 若集合A={1,2,3},集合B={3,4,5},则A∩B为:A. {1,2}B. {3}C. {4,5}D. 空集3. 已知数列{an}的通项公式为an=n^2-n+1,那么该数列的第5项为:A. 9B. 10C. 11D. 124. 函数y=x^3-3x^2+4x-5的极值点个数是:A. 0B. 1C. 2D. 35. 已知向量a=(2,3),向量b=(-1,2),向量a与向量b的夹角θ满足:A. cosθ > 0B. cosθ < 0C. cosθ = 0D. 无法确定6. 函数f(x)=ln(x)的导数为:A. 1/xB. xC. -1/xD. ln(x)7. 已知圆的方程为x^2+y^2-6x-8y+25=0,该圆的半径为:A. 1B. 2C. 3D. 48. 抛物线y^2=4x的焦点坐标为:A. (1,0)B. (2,0)C. (0,1)D. (0,2)9. 已知等差数列{an}的前n项和为S_n,且S_5=50,S_10=100,则S_15为:A. 150B. 100C. 50D. 20010. 函数f(x)=x^3-6x^2+11x-6的零点个数是:A. 1B. 2C. 3D. 4二、填空题(每题4分,共20分)1. 已知等比数列{bn}的首项b1=2,公比q=3,那么b3=______。
2. 函数f(x)=x^2-4x+3的最小值为______。
3. 已知直线l的方程为y=2x+1,点P(-1,2)到直线l的距离为______。
4. 圆心在原点,半径为5的圆的方程为______。
5. 函数y=1/x的图像在第一象限的切线斜率为______。
三、解答题(每题10分,共40分)1. 已知函数f(x)=x^3-3x^2+2,求函数f(x)的单调区间。
高中数学学业水平综合测试卷含答案姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.椭圆()2222 1 0x y a b a b+=>>的中心,右焦点,右顶点,右准线与x 轴的交点依次为,,,O F G H ,则 FG OH的最大值为( )111., . , . , . 234A B C D 不能确定2.某同学做了一个如图所示的等腰直角三角形形状的数表且把奇数和偶数分别依次排在了数表的奇数行和偶数行,若用a (i ,j )表示第 i 行从左数第j 个数,如a (4,3) = 10, 则a (21,6) = ( )A .219B .211C .209D .2133.直线3y =与函数26y x x =-的图象的交点个数为( )A .4个B .3个C .2个D .1个 4.下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°5.(文)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为 A .30B .25 C .20D .15(理)设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c =1 2 4 3 5 76 8 10 129 11 13 15 17………………………A.1B.2C.3D.46.已知函数()f x =223x x -+在区间[]0,m 上有最大值3,最小值2,则m 的取值范围是A .[)1,+∞ B. []0,2 C. (),2-∞ D. []1,27.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 A .7倍 B .5倍 C .4倍 D .3倍8.在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若AC c +0=+PB b PA a ,则ABC ∆的形状为 A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形但不是等边三角形.9.在空间四边形ABCD 中,,,,AC BD AC BD E F ⊥=分别是,AB CD 的中点,则EF 与AC 所成角的大小为 ( ).A 90 .B 60 .C 45 .D 以上都不对10..参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( )。
高中数学学业水平综合测试卷含答案姓名:__________班级:__________考号:__________题号 一 二 三 总分 得分一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知二次函数的图象如图所示,则其导函数的图象大致形状是2.设M(0x ,0y )为抛物线C :x y 82=上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0x 的取值范围是( ) A. [2,+∞) B. (2,+∞) C. (0,2) D. [0,2]3.已知函数)(x f y =的图象关于直线1-=x 对称,且当),0(+∞∈x 时,有,1)(xx f =则当)2,(--∞∈x 时,)(x f 的解析式为( ) A .x1- B .21--x C .21+x D .21+-x4.函数,则的解集为( )A .B .C .D .5."tan 1"α=是""4πα=的(A )充分而不必要条件 (B )必要不而充分条件 (C )充要条件 (D )既不充分也不必要条件 6.已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =A.3 B,2 C.1 D.07.在棱锥P ABC -中,侧棱PA 、PB 、PC 两两垂直,Q 为底面ABC ∆内一点,若点Q 到三个侧面的距离分别为3、4、5,则以线段PQ 为直径的球的表面积为( )A .100πB .50πC .25πD .52π8.(09年湖北重点中学联考理)函数()y f x =在点00(,)x y 处的切线方程21y x =+,则000()(2)limx f x f x x x∆→--∆∆等于A .4-B .2-C .2D .49.设"02""1",2<-+<∈x x x R x 是则的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.平面内有定点A 、B 及动点P ,设命题甲是“||||PB PA -是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的双曲线”. 那么甲是乙的( ) A 、必要不充分条件 B 、充分不必要条件 C 、充要条件 D 、既不充分也不必要条件二、填空题(本大题共5小题,每小题4分,共20分)11.(03年北京卷理)一底面半径为的圆柱,被一平面所截剩下部分母线最大值为,最小值为,那么圆柱被截后剩下部分的体积为 .12.函数)12(log 1.0-=x y 的定义域是_____________.13.已知),3(),1,2(λλ=+=b a ,若a 与b 夹角为钝角,则实数λ的取值范围是14.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若2a 2b =,sin cos 2B B +则角A 的大小为 .15.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n = ▲ .三、解答题(本大题共5小题,共40分) 16.设函数1()ln ().f x x a x a R x=--∈ (I)讨论()f x 的单调性;(II )若()f x 有两个极值点12x x 和,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2?k a =-若存在,求出a 的值,若不存在,请说明理由.17.设一次函数a ax x f +=)(和反比例函数xx g 2)(-=的反函数分别是)(),(11x g x f --,若存在实常数b 使得对任意非零实数x ,)()(1x bf x f -=和)()(1x bg x g -=都成立.(1)求常数b a ,的值;(2)设函数)()()(x g x f x F +=,试判断函数)(x F 在),0(+∞上的单调性并证明.18. (满分14分)设{}n a 是正数组成的数列,其前n 项和为n S ,并且对于所有的*n N ∈,都有2)2(8+=n n a S 。
高中数学学业水平综合训练(1)
1.已知集合M ={0,2,4},N ={1,2,3},P ={0,3},则(M ∪N )∩P 等于( )
A .{0,1,2,3,4}
B .{0,3}
C .{0,4}
D .{0} 解析:M ∪N ={0,1,2,3,4},(M ∪N )∩P ={0,3},故选B. 2.函数y =lg(x +1)的定义域是( ) A .(-∞,+∞) B .(0,+∞) C .(-1,+∞)
D .-1,+∞)
解析:对数函数要求真数大于0,所以x +1>0,解得x >-1,故选C. 3.已知甲:球的半径为1 cm ;乙:球的体积为4π
3 cm 3,则甲是乙的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:充分性:若r =1 cm ,由V =43πr 3
可得体积为43π cm 3,同样利用此
公式可证必要性也成立.
4.已知直线l 过点A (1,2),且与直线y =1
2x +1垂直,则直线l 的方程
是( )
A .y =2x
B .y =-2x +4
C .y =12x +32
D .y =12x +
5
2
解析:因为两直线垂直时,斜率互为倒数的相反数(k 1k 2=-1),所以直线
l 的斜率k =-2,由点斜式方程y -y 0=k (x -x 0)可得,y -2=-2(x -1),
整理得y =-2x +4,故选B.
5.顶点在坐标原点,准线为x =-2的抛物线的标准方程是( ) A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y
解析:因为准线方程为x =-2,所以焦点在x 轴上,且-p
2=-2,
所以p =4,由y 2=2px 得y 2=8x .
6.已知三点A (-3,3), B (0, 1),C (1,0),则|AB →+BC →|等于( ) A .5 B .4 C.13+ 2 D.13-2
解析:因为AB →=(3,-2),BC →=(1,-1),所以AB →+BC →=(4,-3),
所以|AB →+BC
→|=42+(-3)2=5,故选A. 7.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )
A .sin α=-23
B .sin(α+π)=23
C .cos α=5
3 D .tan α=-
5
2
解析:依题意得,r =x 2
+y 2
=5+4=3,sin α=y r ,cos α=x
r
,
tan α=y x ,所以sin α=-23,cos α=53,tan α=-25
=-25
5,
所以A ,B ,C 正确,D 错误.
8.下列等式恒成立的是( ) A.1
3x
=x -2
3(x ≠0)
B .(3x )2=3x 2
C .log 3(x 2
+1)+log 32=log 3(x 2
+3) D .log 31
3
x =-x
解析:1
3
x
=x -1
3(x ≠0),故A 错;(3x )2=32x ,故B 错;
log 3(x 2+1)+log 32=log 32(x 2+1),故C 错.
9.已知数列{a n }满足a 1=1,且a n +1-a n =2,则{a n }的前n 项和S n 等于( ) A .n 2+1 B .n 2 C .2n -1 D .2n -1
解析:数列{a n }是以1为首项,2为公差的等差数列,由S n =na 1+
n (n -1)
2
d =n +
n (n -1)
2
·2=n 2,故选B.
10.已知实数x ,y 满足⎩⎪⎨⎪
⎧x ≤3,y ≤x ,x +y ≥2,
则z =2x +y 的最大值为(
)
A .3
B .5
C .9
D .10
解析:如图,画出可行域,当y =-2x +z 移动到A 点时,直线与y 轴的截距z 取得最大值,因为A (3,3),所以z =2x +y 的最大值为9.答案:C
11.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )
A.(x+2)2+(y+5)2=3 2 B.(x+2)2+(y+5)2=18 C.(x-2)2+(y-5)2=3 2 D.(x-2)2+(y-5)2=18
解析:圆的标准方程(x -a )2
+(y -b )2
=r 2
,圆心为C ⎝
⎛⎭⎪⎫
-1+52
,8+22=(2,5),半径r =1
2(5+1)2+(2-8)2=32,所以圆的标准方程为(x -
2)2+(y -5)2=18.答案:D
12.下列不等式一定成立的是( )
A .x +2
x ≥2(x ≠0) B .x 2
+1
x 2+1
≥1(x ∈R)
C .x 2+1≤2x (x ∈R)
D .x 2+5x +6≥0(x ∈R)
解析:A 选项中,当x <0时,显然不成立;C 选项中,当x =-1时,显然不成立;D 选项中,当x ∈(-3,-2)时,x 2+5x +6<0,所以不成立;B 选项中,x 2
+1x 2+1=(x 2
+1)+1x 2+1
-1≥2
(x 2
+1)·1
x 2+1
-1=
1(x ∈R),当且仅当x =0时取“=”.答案:B
13.已知x >0,且5
3,x ,15成等比数列,则x =____________.
解析:因为513, x ,15成等比数列,所以x 2
=53
×15=25,又x >0,所以
x =5.
14.函数f (x )=sin x cos(x +1)+sin(x +1)cos x 的最小正周期是___________.
解析:f (x )=sin x cos(x +1)+sin(x +1)cos x =sin x +(x +1)]=sin(2x +1),
所以最小正周期T =2π
2
=π.
15.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.
解析:从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数一共有如下12个基本事件:12,13,14,21,23,24,31,32,34,41,42,43;其中该两位数小于20的共有12,13,14三个,所以该两位数小于20的概率为
312=14
. 16.中心在坐标原点的椭圆,其离心率为1
2,两个焦点F 1和F 2在x 轴上,P
为该椭圆上的任意一点,若|PF 1|+|PF 2|=4,则椭圆的标准方程是________.
解析:根据焦点在x 轴上可以设椭圆的标准方程为x 2a 2+y 2
b 2=1(a >b >0),
因为长轴长2a =|PF 1|+|PF 2|=4,离心率e =c a =1
2
,
所以a =2,c =1,b =a 2-c 2=3,所以椭圆的标准方程为x 24+y 2
3=1.
17.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且
a cos A =b
cos B
. (1)证明:△ABC 为等腰三角形; (2)若a =2,c =3,求sin C 的值. (1)证明:因为
a cos A =b
cos B
,所以a cos B =b cos A ,
由正弦定理知sin A cos B=sin B cos A,所以tan A=tan B,又A,B∈(0,π),所以A=B,所以△ABC为等腰三角形.(2)解:由(1)可知A=B,所以a=b=2,
根据余弦定理有:c2=a2+b2-2ab cos C,
所以9=4+4-8cos C,解得cos C=-1
8,
因为C∈(0,π),所以sin C>0,所以sin C=1-cos2C=63 8
.
18.如图,在四棱锥PABCD中,PA⊥AB,PA⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC=2,E为PC的中点.
(1) 证明:AP⊥CD;
(2) 求三棱锥PABC的体积;
(3) 证明:AE⊥平面PCD.
(1)证明:因为PA⊥AB,PA⊥AD,AB⊂平面ABCD,
AD⊂平面ABCD,AB∩AD=A,
所以PA⊥平面ABCD,又CD⊂平面ABCD,
所以AP⊥CD.
(2)解:由(1)可知AP⊥平面ABC,所以V P-ABC=1
3
S△ABC·AP,
又S△ABC=1
2
AB·BC·sin ∠ABC=
1
2
×2×2×sin 60°=3,
所以V P-ABC=1
3
×3×2=
23
3
.
(3)证明:因为CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP ∩AC=A,
所以CD⊥平面APC,
又AE⊂平面APC,
所以CD⊥AE,
由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2,
又因为AP=2,且E为PC的中点,
所以AE⊥PC,
又AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C,
所以AE⊥平面PCD.
(注:可编辑下载,若有不当之处,请指正,谢谢!)。