向心力3变速圆周运动和一般曲线运动讲解
- 格式:ppt
- 大小:888.00 KB
- 文档页数:16
第六章 圆周运动2.向心力 第1课时 向心力【课标定向】1.通过实验,探究并了解匀速圆周运动向心力大小与半径、角速度、质量的关系。
2.能用牛顿第二定律分析匀速圆周运动的向心力。
【素养导引】1.理解向心力的概念及其特点、表达式。
(物理观念)2.通过比较,知道变速圆周运动的合力与向心力的大小与方向。
(科学思维) 3.利用向心力演示器探究向心力大小的表达式。
(科学探究)一、向心力定义 做匀速圆周运动的物体受到总指向圆心的合力方向 始终沿着半径指向圆心 特点 只改变速度的方向 效果力 根据力的作用效果命名表达式F n =m v 2r=m ω2r二、变速圆周运动和一般曲线运动 1.变速圆周运动合力的作用效果: 变速圆周运动的合力产生两个方向的效果:(1)跟圆周相切的分力F t :与物体运动的方向平行,改变线速度的大小。
(2)指向圆心的分力F n :与物体运动的方向垂直,改变线速度的方向。
2.一般曲线运动:(1)曲线运动:运动轨迹既不是直线也不是圆周的曲线运动,称为一般的曲线运动,如图所示。
(2)处理方法:将曲线分割成为许多很短的小段,这样,质点在每一小段的运动都可以看作圆周运动的一部分。
[思考] 如图为公路自行车比赛中运动员正在水平路面上做匀速圆周运动。
若将运动员与自行车看成整体,则运动员转弯时所需向心力的来源如何?所受的合力方向及作用效果是什么?提示:运动员转弯时所需向心力由重力、支持力和地面对车轮的摩擦力的合力提供。
合力指向圆心,充当向心力,改变速度的方向。
如图,一辆汽车正匀速通过一段弯道公路。
判断以下问题:1.汽车受到的合力为零。
( ×)2.汽车做圆周运动的向心力由汽车的牵引力提供。
( ×)3.汽车做圆周运动的向心力既可以改变汽车速度大小,也可以改变汽车速度方向。
( ×)一、向心力的理解及来源分析如图所示,飞机在空中水平面内做匀速圆周运动;滑冰运动员在水平面内做匀速圆周运动。
向心力去的现象。
师:刚才同学们说得很好,圆周运动是变速运动,有加速度,故做圆周运动的物体一定受到力的作用。
而我们知道做匀速圆周运动的物体具有向心加速度,根据牛顿第二定律,这个加速度一定是由于它受到了指向圆心的合力的作用。
这个合力叫做向心力。
下面请同学们把刚才由牛顿第二定律推出的向心力的表达式展示出来。
投影学生推出的向心力表达式:FN=mv2/r , FN=mrω2点评:学生的思维在于老师的激发,学习的积极性在于老师的调动。
通过让学生发表见解,提出疑问,培养学生的语言表达能力和分析问题的能力。
二、实验:用圆锥摆粗略验证向心力的表达式[实验与探究]师:请同学们阅读教材,思考下面的问题:1.实验器材有哪些?2.简述实验原理(怎样达到验证的目的)。
3.实验过程中要注意什么?如何保证小球在水平面内做稳定的圆周运动,测量哪些物理量(记录哪些数据)?4.实验过程中产生误差的原因主要有哪些?学生认真阅读教材,思考问题,找学生代表发言。
教师听取学生的见解,点评、总结。
教师巡视并指导学生完成实验,及时发现并记录学生实验过程中存在的问题。
点评:让学生亲历实验验证的过程。
体验成功的乐趣。
培养动手能力和团结协作的团队精神。
教师听取学生汇报验证的结果,引导学生对实验的可靠性作出评估。
[交流与讨论]生:实验的过程中,多项测量都是粗略的,存在较大的误差,用两个方法得到的力并不严格相等。
生:通过实验我们还体会到。
向心力并不是像重力、弹力、摩擦力那样具有某种性质的力来命名的。
它是效果力,是按力的效果命名的。
在圆锥摆实验中,向心力是小球重力和细线拉力的合力,还可以理解为是细线拉力在水平面内的一个分力。
生:数圈数测时间时,要从零开始数起。
生:我有一个改进的实验,不知是否可行,其装置如图6.7—1所示,让小球在刚好要离开锥面的情况下做匀速圆周运动,我认为利用该装置可以使测量值减少误差。
师:同学们能积极思维,勇于发表自己的见解,这很好。
至于该方案效果如何,老师没有做过,这里也不敢妄下结论,还请同学们课后进一步进行比较性的研究,老师期待着你们的实验结论。
曲线运动一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。
2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。
4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。
若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大; 当0°<θ<180°,速度增大; 当θ=90°,速度大小不变。
5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。
6、关于运动的合成与分解 (1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。
那几个运动叫做这个实际运动的分运动.特征:① 等时性;② 独立性;③ 等效性;④ 同一性。
(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。
②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。
③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。
二、小船过河问题1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min dt v =船,合速度方向沿v 合的方向。
2、位移最小:①若v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ=水船,最小位移为min l d=。
②若v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ=船水,过河最小位移为min cos v dl d v θ==水船。
向心力一、向心力┄┄┄┄┄┄┄┄①1.定义:做匀速圆周运动的物体受到的指向圆心的合力。
2.方向:始终指向圆心,与线速度方向垂直。
3.公式:F n =m v 2r 或F n =mω2r 或F n =m 4π2T2r 。
4.来源:(1)向心力是按照力的作用效果命名的。
(2)匀速圆周运动中向心力可能是物体所受外力的合力,也可能是某个力的分力。
5.作用:产生向心加速度,改变线速度的方向。
[说明]根据向心加速度的表达式a n =v 2r =ω2r =4π2T2r =4π2n 2r =ωv ,结合牛顿第二定律F n =ma n 就可得到向心力表达式。
①[判一判]1.向心力是除物体所受重力、弹力以及摩擦力以外的一种新力(×) 2.向心力的方向时刻指向圆心,方向不断变化(√) 3.做圆周运动的物体其向心力大小不变,方向时刻变化(×) 4.向心力既可以改变速度的大小,也可以改变速度的方向(×) 5.物体做圆周运动的速度越大,向心力一定越大(×) 二、变速圆周运动和一般的曲线运动┄┄┄┄┄┄┄┄②1.变速圆周运动:线速度大小发生变化的圆周运动,做变速圆周运动的物体同时具有向心加速度和切向加速度。
2.一般的曲线运动(1)定义:运动轨迹既不是直线也不是圆周的曲线运动。
(2)研究方法:将一般的曲线运动分成许多很短的小段,质点在每一小段的运动都可以看做圆周运动的一部分。
[说明]对于变速圆周运动,F n =m v 2r =mω2r ,a n =v 2r=ω2r 仍可用。
②[填一填]荡秋千是小朋友很喜欢的游戏,当秋千向下荡时, (1)小朋友做的是________运动; (2)绳子拉力与重力的合力指向悬挂点吗?________________________________________________________________________ 解析:(1)秋千荡下时,速度越来越大,做的是变速圆周运动。
6 向心力[目标定位] 1.理解向心力的概念,知道向心力是根据力的效果命名的.2.知道向心力大小与哪些因素有关,掌握向心力的表达式,并能用来进行有关计算.3.知道变速圆周运动中向心力是合外力的一个分力,知道合外力的作用效果.一、向心力1.定义:做匀速圆周运动的物体产生向心加速度的原因是它受到了指向圆心的合力.这个力叫做向心力.2.方向:始终沿着半径指向圆心.3.表达式:(1)F N =m v 2r ;(2)F N =mω2r .4.效果力:向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.想一想 在对物体进行受力分析时,能否说物体除了受其他力之外还受一个向心力的作用?答案 不能.向心力是根据力的效果命名的,不是性质力.在分析物体受力时,不能说物体还受一个向心力的作用,向心力可以是某一种性质力,也可以是几个性质力的合力或某一性质力的分力.二、变速圆周运动和一般的曲线运动1.变速圆周运动:合力不指向圆心,合力F 可以分解为互相垂直的两个分力.(1)跟圆周相切的分力,F t 产生切向加速度,切向加速度与物体的速度方向共线,它改变速度的大小.(2)指向圆心的分力,F N 产生向心加速度,与速度方向垂直,改变速度的方向.2.一般的曲线运动的处理方法:可以把曲线分割成许多很短的小段,每一小段可看做一小段圆弧,研究质点在这一小段的运动时,可以采用圆周运动的处理方法进行处理.想一想 向心力公式F N =m v 2r =mω2r 是由匀速圆周运动中得出的,在变速圆周运动中能适用吗?答案 变速圆周运动中,某一点的向心力可用F N =m v 2r 、F N =mrω2求解.一、对向心力的理解1.大小:F N =ma n =m v 2r =mω2r =mωv .(1)匀速圆周运动,向心力的大小始终不变.(2)非匀速圆周运动,向心力的大小随速率v 的变化而变化,公式表述的只是瞬时值.2.方向:无论是否为匀速圆周运动,其向心力总是沿半径指向圆心,方向时刻改变,故向心力是变力.3.作用效果:由于向心力始终指向圆心,其方向与物体运动方向始终垂直,故向心力只改变线速度的方向,不改变其大小.4.来源:它可以是重力、弹力、摩擦力等各种性质的力,也可以是几个力的合力,还可以是某个力的分力.(1)若物体做匀速圆周运动,物体所受到的合力就是向心力且该合力的大小不变但方向时刻改变.(2)若物体做非匀速圆周运动,物体所受合力沿半径方向的分力提供向心力.而合力在切线方向上的分力用于改变线速度的大小.【例1】 关于向心力的说法中正确的是( )A .物体由于做圆周运动还受到一个向心力B .向心力可以是任何性质的力C .做匀速圆周运动的物体其向心力是恒力D .做圆周运动的物体所受各力的合力一定提供向心力答案 B解析 力是改变物体运动状态的原因,因为有向心力物体才做圆周运动,而不是因为做圆周运动才产生向心力,也不能说物体还受一个向心力,故A 错;向心力是效果力,可以是任何一种性质的力,故B 对;物体做匀速圆周运动的向心力方向永远指向圆心,其大小不变,方向时刻改变,故C 错;只有匀速圆周运动中,合外力提供向心力,而非匀速圆周运动中向心力并非物体所受的合外力,而是合外力指向圆心的分力提供向心力,故D 错.【例2】图5-6-1如图5-6-1所示,一圆盘可绕过圆盘的中心O 且垂直于盘面的竖直轴转动,在圆盘上放一小木块A ,它随圆盘一起运动——做匀速圆周运动,则关于木块A 的受力,下列说法中正确的是( )A .木块A 受重力、支持力和向心力B .木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相反C .木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D .木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同 答案 C解析 由于圆盘上的木块A 在竖直方向上没有加速度,所以,它在竖直方向上受重力和支持力的作用而平衡.而木块在水平面内做匀速圆周运动,其所需向心力由静摩擦力提供,且静摩擦力的方向指向圆心O .二、圆周运动中的动力学问题解决圆周运动的一般步骤:(1)确定做圆周运动的物体为研究对象.明确圆周运动的轨道平面、圆心位置和半径.(2)对研究对象进行受力分析,画出受力示意图.运用平行四边形定则或正交分解法求出外界提供的向心力F n .(3)抓住所给的已知条件,是线速度v 、角速度ω、还是周期T ,根据向心力公式F N =m v 2r =mω2r =m 4π2T 2r =m v ω选择适当形式确定物体所需要的向心力.(4)根据题意由牛顿第二定律及向心力公式列方程求解.【例3】图5-6-2如图5-6-2所示,质量为1 kg的小球用细绳悬挂于O点,将小球拉离竖直位置释放后,到达最低点时的速度为2 m/s,已知球心到悬点的距离为1 m,重力加速度g=10 m/s2,求小球在最低点时对绳的拉力的大小.答案14 N解析小球在最低点时做圆周运动的向心力由重力mg和绳的拉力F T提供(如图所示),即F T-mg=m v2 r所以F T=mg+m v2r=⎝⎛⎭⎪⎫1×10+1×221N=14 N由牛顿第三定律得,小球在最低点时对绳的拉力大小为14 N.三、圆锥摆模型模型及特点:如图5-6-3所示,图5-6-3让细线带动小球在水平面内做匀速圆周运动.重力和拉力(或支持力)的合力提供向心力,F 合=mg tan θ.设摆线长为l ,则圆半径r =l sin θ.根据牛顿第二定律:mg tan θ=m v 2r【例4】图5-6-4有一种叫“飞椅”的游乐项目,示意图如图5-6-4所示.长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转动轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求:(1)转盘转动的角速度ω与夹角θ的关系;(2)此时钢绳的拉力多大?答案 (1)g tan θr +L sin θ (2)mg cos θ解析(1)对座椅受力分析,如图所示.转盘转动的角速度为ω时,钢绳与竖直方向的夹角为θ,则座椅到转轴的距离即座椅做圆周运动的半径为R =r +L sin θ①根据牛顿第二定律:mg tan θ=mω2R ②由①②得:ω=g tan θr +L sin θ(2)设钢绳的拉力为F T ,由力的三角形知:F T =mg cos θ对向心力的理解1.关于向心力的说法中正确的是 ( )A .物体由于做圆周运动而产生了一个向心力B .向心力不改变圆周运动中物体速度的大小C .做匀速圆周运动的物体其向心力即为其所受的合外力D .做匀速圆周运动的物体其向心力是不变的答案 BC解析 当物体所受的外力的合力始终有一分力垂直于速度方向时,物体就将做圆周运动,该分力即为向心力,故先有向心力然后才使物体做圆周运动.因向心力始终垂直于速度方向,所以它不改变速度的大小,只改变速度的方向,当合外力完全提供向心力时,物体就做匀速圆周运动,该合力大小不变,方向时刻改变,故向心力是变化的.向心力的来源2. 如图5-6-5所示,一小球用细绳悬挂于O 点,将其拉离竖直位置一个角度后释放,则小球以O 点为圆心做圆周运动,运动中小球所需的向心力是 ( )A .绳的拉力B .重力和绳拉力的合力C .重力和绳拉力的合力沿绳方向的分力D .绳的拉力和重力沿绳方向分力的合力答案 CD 图5-6-5解析 对小球受力分析如图所示,小球受重力和绳子拉力作用,向心力是指向圆心方向的合外力,它可以是小球所受合力沿绳子方向的分力,也可以是各力沿绳子方向的分力的合力,正确选项为C 、D.圆周运动中的动力学问题3. 如图5-6-6所示,将完全相同的两小球A 、B ,用长L =0.8 m 的细绳悬于以v =4 m/s 向左匀速运动的小车顶部,两球与小车前后壁接触.由于某种原因,小车突然停止,此时悬线中张力之比F A ∶F B 为(g =10 m/s 2)( ) A .1∶1B .1∶2C .1∶3D .1∶4答案 C解析 小车突然停止,B 球将做圆周运动,所以F B =m v 2L +mg =30m ;A 球做水平方向减速运动,F A =mg =10m ,故此时悬线中张力之比为F A ∶F B =1∶3,C 选项正确.圆锥摆模型4. 一个内壁光滑的圆锥筒的轴线是竖直的,圆锥固定,有质量相同的两个小球A 和B 贴着筒的内壁在水平面内做匀速圆周运动,如图5-6-7所示,A 的运动半径较大,则 ( )A .A 球的角速度必小于B 球的角速度B .A 球的线速度必小于B 球的线速度C .A 球运动的周期必大于B 球运动的周期D .A 球对筒壁的压力必大于B 球对筒壁的压力答案 AC解析 两球均贴着筒的内壁在水平面内做匀速圆周运动,它们均受到重力和筒壁对它们的弹力作用,这两个力的合力提供向心力,如图所示,可知筒壁图5-6-6 图5-6-7对小球的弹力F N =mg sin θ,而重力和弹力的合力为F 合=mg cot θ,由牛顿第二定律可得mg cot θ=mω2R =m v 2R =m 4π2R T 2 所以ω= g cot θR ①v =gR cot θ② T =2π R g cot θ ③ F N =mg sin θ ④ 由于A 球运动的半径大于B 球运动的半径,由①式可知A 球的角速度必小于B 球的角速度;由②式可知A 球的线速度必大于B 球的线速度;由③式可知A 球的运动周期必大于B 球的运动周期;由④式可知A 球对筒壁的压力一定等于B 球对筒壁的压力.所以选项A 、C 正确.(时间:60分钟)题组一 对向心力的理解1.对于做匀速圆周运动的物体,下列判断正确的是( ) A .合力的大小不变,方向一定指向圆心 B .合力的大小不变,方向也不变C.合力产生的效果既改变速度的方向,又改变速度的大小D.合力产生的效果只改变速度的方向,不改变速度的大小答案AD解析匀速圆周运动的合力等于向心力,由于线速度v的大小不变,故F合只能时刻与v的方向垂直,即指向圆心,故A正确;由于F合时刻指向圆心,故其方向必须时刻改变才能时刻指向圆心,否则F就不能时刻指向圆心了,故B错;由合力F合的方向时刻与速度的方向垂直而沿切线方向无分力,故该力只改变速度的方向,不改变速度的大小,C错、D对.2.做匀速圆周运动的物体所受的向心力是() A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力B.因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小C.物体所受的合外力D.向心力和向心加速度的方向都是不变的答案BC解析做匀速圆周运动的物体所受的向心力是物体所受的合外力,由于指向圆心,且与线速度垂直,不能改变线速度的大小,只用来改变线速度的方向,向心力虽大小不变,但方向时刻改变,不是恒力,由此产生的向心加速度也是变化的,所以A、D错误,B、C正确.3.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相同的时间里甲转过60°,乙转过45°,则它们的向心力大小之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16答案 C解析由于m1∶m2=1∶2,r1∶r2=1∶2,ω1∶ω2=θ1∶θ2=4∶3,向心力F=mrω2,故F1∶F2=4∶9,C对.题组二向心力的来源4. 如图5-6-8所示,有一个水平大圆盘绕过圆心的竖直图5-6-8轴匀速转动,小强站在距圆心为r 处的P 点不动.关于小强的受力,下列说法正确的是 ( )A .小强在P 点不动,因此不受摩擦力作用B .若使圆盘以较小的转速转动时,小强在P 点受到的摩擦力为零C .小强随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D .如果小强随圆盘一起做变速圆周运动,那么其所受摩擦力仍指向圆心 答案 C解析 由于小强随圆盘做匀速圆周运动,一定需要向心力,该力一定指向圆心方向,而重力和支持力在竖直方向上,它们不能充当向心力,因此他会受到摩擦力作用,且充当向心力,A 、B 错误,C 正确;当小强随圆盘一起做变速圆周运动时,合力不再指向圆心,则其所受的摩擦力不再指向圆心,D 错.5. 用细绳拴着小球做圆锥摆运动,如图5-6-9所示,下列说法正确的是 ( )A .小球受到重力、绳子的拉力和向心力的作用B .小球做圆周运动的向心力是重力和绳子的拉力的合力C .向心力的大小可以表示为F n =mrω2,也可以表示为F n =mg tan θD .以上说法都正确答案 BC解析 小球受两个力的作用:重力和绳子的拉力,两个力的合力提供向心力,因此有F n =mg tan θ=mrω2.所以正确答案为B 、C.6. 如图5-6-10所示,在匀速转动的圆筒内壁上紧靠着一个物体,物体随筒一起转动,物体所需的向心力由下面哪个力来提供( ) A .重力 B .弹力图5-6-9 图5-6-10C.静摩擦力D.滑动摩擦力答案 B解析本题可用排除法.首先可排除A、D两项;若向心力由静摩擦力提供,则静摩擦力或其分力应指向圆心,这是不可能的,C错.故选B.7.在水平冰面上,狗拉着雪橇做匀速圆周运动,O点为圆心.能正确地表示雪橇受到的牵引力F及摩擦力F f的图是()答案 C解析由于雪橇在冰面上滑动,故滑动摩擦力方向必与运动方向相反,即方向应为圆的切线方向,因做匀速圆周运动,合外力一定指向圆心,由此可知C 正确.题组三圆周运动中的动力学问题8.在光滑的水平面上,用长为l的细线拴一质量为m的小球,使小球以角速度ω做匀速圆周运动.下列说法中正确的是() A.l、ω不变,m越大线越易被拉断B.m、ω不变,l越小线越易被拉断C.m、l不变,ω越大线越易被拉断D.m不变,l减半且角速度加倍时,线的拉力不变答案AC解析在光滑的水平面上细线对小球的拉力提供小球做圆周运动的向心力.由F n=mω2r知,在角速度ω不变时,F n与小球的质量m、半径l都成正比,A正确,B错误;质量m不变时,F n又与l和ω2成正比,C正确,D错误.9.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达20 m/s 2,g 取10 m/s 2,那么此位置的座椅对游客的作用力相当于游客重力的( ) A .1倍B .2倍C .3倍D .4倍 答案 C解析 游客乘坐过山车在圆弧轨道最低点的受力如图所示.由牛顿第二定律得F N -mg =ma 向=2mg ,则F N =mg +2mg =3mg ,F N mg =3.10. 如图5-6-11所示,在光滑杆上穿着两个小球m 1、m 2,有m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r 1与r 2之比为( )A .1∶1B .1∶ 2C .2∶1D .1∶2 答案 D解析 设两球受绳子的拉力分别为F 1、F 2.对m 1:F 1=m 1ω21r 1对m 2:F 2=m 2ω22r 2 因为F 1=F 2,ω1=ω2解得r 1r 2=m 2m 1=12. 11. 如图5-6-12所示,A 、B 两个小球质量相等,用一根轻绳相连,另有一根轻绳的两端分别连接O 点和B 点,让两个小球绕O 点在光滑水平桌面上以相同的角速度做匀速圆周运动,若OB 绳上的拉力为F 1,AB 绳上的拉力为F 2,OB =AB ,则( )A .A 球所受向心力为F 1,B 球所受向心力为F 2图5-6-11图5-6-12B .A 球所受向心力为F 2,B 球所受向心力为F 1C .A 球所受向心力为F 2,B 球所受向心力为F 1-F 2D .F 1∶F 2=3∶2答案 CD解析 小球在光滑水平桌面上做匀速圆周运动,设角速度为ω,在竖直方向上所受重力与桌面支持力平衡,水平方向不受摩擦力,绳子的拉力提供向心力.由牛顿第二定律,对A 球有F 2=mr 2ω2,对B 球有F 1-F 2=mr 1ω2,已知r 2=2r 1,各式联立解得F 1=32F 2.故C 、D 对,A 、B 错.12. 如图5-6-13所示,质量为m 的物体,沿半径为r的圆轨道自A 点滑下,A 与圆心O 等高,滑至B 点(B点在O 点正下方)时的速度为v ,已知物体与轨道间的动摩擦因数为μ,求物体在B 点所受的摩擦力为________.答案 μm ⎝ ⎛⎭⎪⎫g +v 2r 解析 物体由A 滑到B 的过程中,受到重力、轨道弹力及摩擦力的作用,做圆周运动,在B 点物体的受力情况如图所示,其中轨道弹力F N 与重力mg 的合力提供物体做圆周运动的向心力;由牛顿第二定律有F N -mg =m v 2r ,可求得F N =mg +m v 2r ,则滑动摩擦力为F f =μF N =μm ⎝ ⎛⎭⎪⎫g +v 2r . 题组四 圆锥摆类模型13. 质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内做半径为R 的匀速圆周运动,且角速度为ω,如图5-6-14所示,则杆的上端受到球对其作用力的大小为( )A .m ω2RB .m g 2-ω4R 2图5-6-13图5-6-14C .m g 2+ω4R 2D .不能确定答案 C 解析 对小球进行受力分析,小球受两个力:一个是重力mg ,另一个是杆对小球的作用力F ,两个力的合力产生向心力.由平行四边形定则可得:F =mg 2+ω4R 2,再根据牛顿第三定律,可知杆受到球对其作用力的大小为F =m g 2+ω4R 2.故选项C 正确.14. 质量为m 的直升机以恒定速率v 在空中水平盘旋(如图5-6-15所示),其做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对直升机的作用力大小为( ) A .m v 2RB .mgC .m g 2+v 4R 2D .m g 2-v 4R 2 答案 C解析 直升机在空中水平盘旋时,在水平面内做匀速圆周运动,受到重力和空气的作用力两个力的作用,其合力提供向心力,F n =m v 2R .直升机受力情况如图所示,由几何关系得F =(mg )2+F 2n =m g 2+v 4R 2,选项C 正确.15. 冬奥会上,我国选手在双人花样滑冰运动中获得金牌.图为赵宏博拉着申雪在空中做圆锥摆运动的精彩场面,已知申雪的体重为G,做圆锥摆运动时和水平冰面的夹角为30°,重力加速度为g ,求申雪做圆周运动的向心加速度和受到的拉力.图5-6-15 图5-6-16答案 3g 2G解析 对申雪受力分析如图 水平方向:F cos θ=ma 竖直方向:F sin θ=mg 由以上两式得:向心加速度 a =g cot θ=3g拉力F =mg sin θ=2G .。
高一物理【向心力的分析及表达式的应用】学习资料+习题(人教版)一 向心力1.定义:做匀速圆周运动的物体所受的指向圆心的合力。
2.大小:F n =m v 2r或F n =mω2r 。
3.方向:始终指向圆心,与线速度方向垂直。
4.来源(1)向心力是根据力的作用效果命名的。
(2)匀速圆周运动中向心力是由某个力或者几个力的合力提供的。
5.作用:改变线速度的方向。
二 变速圆周运动和一般曲线运动的受力特点1.变速圆周运动的合力不等于向心力,合力产生两个方向的效果,如图所示。
(1)跟圆周相切的分力F t :改变线速度的大小。
(2)指向圆心的分力F n :改变线速度的方向。
2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动。
(2)处理方法:可以把曲线分割为许多很短的小段,质点在每一小段的运动都可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理。
对向心力的理解如图所示,在线的一端系一个小球(请注意不要用较轻的球,如塑料球等),另一端牵在手中。
将手举过头顶,使小球在水平面内做圆周运动。
(1)运动中的小球受哪些力的作用?这些力的作用效果是什么?(2)改变小球转动的快慢、线的长度或球的质量,小球对手的拉力如何变化?提示:(1)运动中的小球受重力和绳子的拉力作用。
这两个力的合力提供小球做圆周运动的向心力。
(2)小球转动的越快,向心力越大,小球对手的拉力越大;线越长,向心力越大,小球对手的拉力越大;小球的质量越大,向心力越大,小球对手的拉力越大。
1.向心力公式(1)公式:F n =m v 2r=mω2r =mωv 。
(2)说明:对于匀速圆周运动,向心力大小始终不变,但对非匀速圆周运动(如用一根绳拴住小球绕固定圆心在竖直平面内做的圆周运动),其向心力大小随速率v 的变化而变化,公式表述的只是瞬时值。
2.向心力是效果力向心力因其方向时刻指向圆心而得名,故它为效果力。
6.2第2课时向心力的分析和向心力公式的应用学习目标1.理解向心力的概念,会分析生活中圆周运动实例的向心力的来源。
2.知道向心力大小与哪些因素有关,并能利用向心力表达式进行计算。
3.理解在变速圆周运动中向心力为合力沿半径方向的分力。
自主预习一、向心力1.做匀速圆周运动的物体具有向心加速度,是由于它受到了指向的合力,这个合力叫向心力。
2.向心力的方向始终指向,由于方向,所以向心力是。
3.向心力是由某个力或者几个力的合力提供的,是根据力的来命名的。
二、向心力的大小F n=和F n=。
三、变速圆周运动和一般曲线运动1.变速圆周运动变速圆周运动所受合力一般不等于向心力,合力一般产生两个方面的效果:(1)合力F跟圆周相切的分力F t,描述速度大小变化的快慢。
(2)合力F指向圆心的分力F n,此分力提供做圆周运动所需的向心力,只改变速度的方向。
2.一般曲线运动的处理方法一般曲线运动,可以把曲线分割成许多很短的小段,每一小段可看作一小段圆弧。
圆弧弯曲程度不同,表明它们具有不同的半径。
这样,质点沿一般曲线运动时,可以采用圆周运动的分析方法进行处理。
课堂探究一、向心力[问题导学]如图所示,圆盘上物体随圆盘一起匀速转动;在光滑漏斗内壁上,小球做匀速圆周运动。
它们运动所需要的向心力分别由什么力提供?计算圆盘上物体所受的向心力和漏斗内壁上小球的角速度分别需要知道哪些信息?结论1:圆盘上物体所需要的向心力由提供;光滑漏斗内的小球做圆周运动的向心力由和的合力提供。
结论2:计算圆盘上物体所受的向心力需要知道物体做圆周运动的、和。
计算漏斗内壁上小球的角速度需要知道小球做圆周运动的、和。
二、变速圆周运动和一般曲线运动[问题导学]荡秋千是小朋友很喜欢的游戏,当秋千向下荡时,请思考此时小朋友做的是匀=mω2r还适用吗?速圆周运动还是变速圆周运动?运动过程中,公式F n=m v2r结论1:小朋友做的是圆周运动。
结论2:。
[例题展示]【例题1】如图所示,水平转盘上放有质量为m的物体(可视为质点),连接物体和转轴的绳子长为r,物体与转盘间的最大静摩擦力是其压力的μ倍,转盘的角速度由零逐渐增大,求:(1)绳子对物体的拉力为零时的最大角速度;(2)当角速度为时,绳子对物体拉力的大小。
变速圆周运动和一般曲线运动的受力特点-概述说明以及解释1.引言概述部分:变速圆周运动和一般曲线运动是物体在运动过程中常见的两种情况,它们在受力特点上有着明显的区别。
本文将就这两种运动的受力特点进行详细的分析和对比,并探讨其物理规律和应用。
通过对这两种运动形式的研究,我们可以更深入地理解物体在不同运动状态下所受的力和力的作用机制,为我们在实际生活和工程设计中的问题解决提供有力的参考和指导。
在接下来的文章中,我们将深入探讨变速圆周运动和一般曲线运动的受力特点,为读者呈现一个全面而深入的分析。
受力特点": {}}}}请编写文章1.1 概述部分的内容1.2 文章结构:本文主要分为引言、正文和结论三部分。
在引言部分,将对变速圆周运动和一般曲线运动的受力特点进行概述并说明文章的目的。
接着在正文部分,将详细讨论变速圆周运动和一般曲线运动的受力特点,包括惯性力、向心力、切向力、引力、摩擦力和正压力等。
最后在结论部分,将对两种运动的受力特点进行总结,并进行对比分析,以便更好地理解它们之间的区别和联系。
整篇文章结构清晰,逻辑性强,旨在全面揭示变速圆周运动和一般曲线运动的受力特点。
析两种运动的受力特点": {}}}}请编写文章1.2 文章结构部分的内容1.3 目的:本文旨在通过对变速圆周运动和一般曲线运动的受力特点进行深入分析,探讨这两种运动在受力过程中的异同。
通过对这两种运动形式的受力特点进行比较和对比,可以帮助我们更好地理解物体在不同运动状态下所受到的力的作用规律,以及力的大小和方向对运动轨迹的影响。
通过这种方式,我们可以更好地理解和应用牛顿运动定律,从而提高我们对物体运动规律的认识和理解。
最终,通过本文的研究,我们可以更深入地探讨物体在复杂运动状态下的受力情况,为相关领域的研究和应用提供理论支持和参考。
章1.3 目的部分的内容2.正文2.1 变速圆周运动的受力特点在进行变速圆周运动时,物体受到多个力的作用,其中包括惯性力、向心力和切向力。
6.2向心力(知识解读)(原卷版)•知识点1 向心力•知识点2 向心力的大小•知识点3 变速圆周运动和一般的曲线运动•作业巩固训练总指向圆心,这个指向圆心的力叫作向心力,符号为Fn。
2、方向:指向圆心,向心力方向与速度方向垂直,是变力。
3、作用效果:只改变速度的方向,不改变速度的大小。
4、向心力的几点说明(1)向心力可以是重力、弹力、摩擦力等各种性质的力,也可以是几个力的合力,还可以是某个力的分力。
物体做匀速圆周运动时,由合力提供向心力。
(2)向心力是根据作用效果命名的,并不是一种新的性质的力,受力分析时,切不可在物体的相互作用力以外再添加一个向心力。
(3)向心力不是物体真实受到的一个力,不能说物体受到向心力的作用,只能说某个力或某几个力提供了向心力。
【典例11】下列有关向心力的说法正确的是()A.向心力的方向总是指向圆心,是恒力B.变速圆周运动的向心力并不指向圆心C.圆周运动中,合外力等于向心力D.向心力可以由重力或弹力等来充当,是效果力【典例12】(多选)假定某水平圆形环岛路面如图(a),汽车受到的最大静摩擦力与重力的比值恒定不变,则当汽车匀速率地通过环形路段时,汽车的侧向摩擦力达到最大时的最大速度称为临界速度,下列说法正确的是()A.汽车所受的合力为零B.汽车受重力、弹力、摩擦力和向心力的作用C.汽车在环岛路外侧行驶时,其临界速度增大D .如图(b )质量相等的两辆车以大小相等的速度绕环岛中心转,甲车受到指向轨道圆心的摩擦力比乙车的大【变式11】两个质量不同的小球用长度不等的细线拴在同一点并在同一水平面内做匀速圆周运动,则它们的( )A .运动的线速度大小相等B .运动的角速度大小相等C .向心加速度大小相等D .向心力大小相等【变式12】如图所示,一辆汽车通过拱桥的桥顶,汽车在竖直方向上受到 力和 力的作用,向心力是它们的 。
顶,使小球在水平面内做圆周运动。
此时,小球所受的向心力近似等于手通过绳对小球的拉力。