自感现象中的感应电流和感应电动势
- 格式:pdf
- 大小:310.10 KB
- 文档页数:3
电感的自感系数计算电感是电路中常见的元件之一,其主要作用是储存和释放电能。
在电感中,存在着一种称为自感的现象,即电感中自生的感应电动势。
本文将介绍电感的自感系数的计算方法。
一、理论背景在电磁感应中,法拉第定律描述了自感现象的基本规律。
根据法拉第定律,电磁感应产生的感应电动势E与电感的自感系数L和电流I之间存在以下关系:E = -L * dI/dt其中,E为感应电动势,L为自感系数,dI/dt为电流变化的速率。
二、计算方法为了计算电感的自感系数L,需要进行一系列的实验。
首先,搭建一个电感电路,将电感与电流表、电压表和电源连接。
接下来,将电源的电压调节至一个较小的恒定值。
然后,通过改变电路中的电流值I,测量电感两端的感应电动势E和电流的变化速率dI/dt。
可以通过使用示波器测量电感两端的电压波形,并根据波形的变化情况计算出电流的变化速率。
在实验过程中,需要多组数据以获得准确的结果。
通过测量电流和感应电动势之间的关系,我们可以拟合出一个线性方程。
E = -L * dI/dt其中,E为感应电动势,L为自感系数,dI/dt为电流的变化速率。
通过拟合线性方程,我们可以获得电感的自感系数L的数值。
将所得的数值与电感的理论值进行比较,以验证实验结果的准确性。
三、例子说明为了更好地理解电感的自感系数计算过程,我们可以通过一个例子来演示。
假设我们有一个电感,其感应电动势E和电流变化速率dI/dt的数据如下:电流变化(dI/dt) (A/s) 感应电动势(E) (V)0.2 -0.40.4 -0.80.6 -1.20.8 -1.61.0 -2.0我们可以通过将这些数据代入线性方程E = -L * dI/dt来计算自感系数L。
将第一组数据代入方程,我们得到 -0.4 = -L * 0.2,解得L = 2 H。
将其他数据依次代入方程,得到的自感系数L值都为2 H。
根据这些计算结果,我们可以得出结论:该电感的自感系数为2 H。
电磁感应自感现象与互感现象的原理电磁感应是指当一个导体处于磁场中,导体内部会产生感应电流的现象。
电磁感应现象是基于法拉第电磁感应定律,即磁通量的变化率与感应电动势成正比。
在电磁感应中,存在两种重要的现象,即自感现象和互感现象。
一、自感现象的原理自感现象是指当电流在一个闭合线圈中发生变化时,产生的感应电动势激发出的电流会阻碍原有电流变化的现象。
这是由于闭合线圈中的磁场变化引发的自感效应。
自感现象可以通过法拉第电磁感应定律来解释。
当电流变化时,电流激发出的磁场也会发生变化,从而产生感应电动势。
根据Lenz定律,感应电动势的方向会使得感应电流产生的磁场与引起感应电动势的磁场方向相反。
这样,感应电流会阻碍原有电流变化。
二、互感现象的原理互感现象是指当两个或多个线圈相互靠近时,其中一个线圈中的电流变化会引起其他线圈中感应电动势的产生。
互感现象是自感现象的一种推广。
互感现象可以通过互感系数来描述,互感系数是指两个线圈中每个线圈分别通过在另一个线圈上的总磁链与通过自身的总磁链之比。
如果两个线圈的互感系数不为零,当其中一个线圈的电流发生变化时,另一个线圈中感应电动势的大小和方向也会发生变化。
互感现象的原理可以用法拉第电磁感应定律和Laplace-Neumann定律来解释。
根据法拉第电磁感应定律,当线圈中的磁通量变化时,其上会产生感应电动势。
而根据Laplace-Neumann定律,感应电动势的方向会使得感应电流产生的磁场与引起感应电动势的磁场方向相反。
总结:电磁感应自感现象和互感现象都是基于法拉第电磁感应定律的。
自感现象是闭合线圈内部电流变化引发的感应电动势阻碍原有电流变化;互感现象是不同线圈之间的电流变化引发的感应电动势相互作用的现象。
这两个现象在电磁学和电路中具有重要的应用价值,例如变压器、电感器等。
通过深入理解电磁感应自感现象与互感现象的原理,我们可以更好地应用它们于实际生活与工作中,从而推动现代科技的发展。
感应电动势和自感现象的概念和计算一、感应电动势的概念和计算1.概念:感应电动势是指在导体周围存在变化的磁场时,导体中产生的电动势。
它是由法拉第电磁感应定律所描述的。
2.计算:根据法拉第电磁感应定律,感应电动势E和磁通量变化率ΔΦ/Δt成正比,可以表示为:E = -N(ΔΦ/Δt)其中,E为感应电动势,N为导体中的匝数,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、自感现象的概念和计算1.概念:自感现象是指电流变化时,导体本身产生的电磁感应现象。
它是由自感电动势和自感系数来描述的。
2.计算:根据自感电动势的定义,自感电动势E和电流变化率ΔI/Δt成正比,可以表示为:E = L(ΔI/Δt)其中,E为自感电动势,L为自感系数,ΔI为电流的变化量,Δt为时间的变化量。
三、相关知识点1.法拉第电磁感应定律:描述了感应电动势的产生条件和大小关系。
2.楞次定律:描述了感应电流的方向和大小,以及能量转换的关系。
3.磁通量:磁场穿过某一闭合面的总量,用Φ表示。
4.磁通量变化率:磁通量随时间的变化率,反映了磁通量的变化速度。
5.自感系数:描述了导体本身产生自感电动势的能力,用L表示。
6.电感:指导体对电流变化的阻碍作用,由自感系数和导体本身的特性决定。
7.电感器:利用自感现象制成的电子元件,具有滤波、震荡等功能。
8.交流电和直流电:根据电流方向是否变化,将电流分为交流电和直流电。
9.电磁波:由变化电磁场产生的波动现象,传播速度为光速。
10.能量转换:感应电动势和自感现象中,电能和磁能可以相互转换。
以上是关于感应电动势和自感现象的概念和计算的知识点介绍,希望对您有所帮助。
习题及方法:1.习题:根据法拉第电磁感应定律,一个闭合回路中的感应电动势E与磁通量变化率ΔΦ/Δt之间的关系是什么?方法/答案:根据法拉第电磁感应定律,感应电动势E和磁通量变化率ΔΦ/Δt成正比,即E ∝ ΔΦ/Δt。
2.习题:一个导体棒在磁场中以速度v垂直切割磁感线,如果磁场强度为B,导体棒长度为L,切割速度为v,求切割产生的感应电动势E。
第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。
考点解读 典型例题知识要点1.法拉第电磁感应定律:(1)感应电动势:在电磁感应现象中产生的电动势叫做感应电动势.感生电动势:由感生电场产生的感应电动势. 动生电动势:由于导体运动而产生的感应电动势.(2)内容:电路中感应电动势大小,跟穿过这一电路的磁通量的变化率成正比.(3)公式:E n t∆Φ=∆. (4)注意:①上式适用于回路磁通量发生变化的情况,回路不一定要闭合,只要穿过电路的磁通量发生变化,就会产生感应电动势;若电路是闭合的就会有感应电流产生.②△Φ不能决定E 的大小,t∆∆Φ才能决定E 的大小,而t∆∆Φ与△Φ之间无大小上的必然联系. ③公式只表示感应电动势的大小,不涉及方向. ④当△Φ仅由B 引起时,则tBnS E ∆∆=;当△Φ仅由S 引起时,则tSnBE ∆∆=. ⑤公式tnE ∆∆Φ=,若△t 取一段时间,则E 为△t 这段时间内感应电动势的平均值.当磁通量的变化率t∆∆Φ不随时间线性变化时,平均感应电动势一般不等于初态与末态电动势的平均值.若△t 趋近于零,则表示瞬时值.(5)部分导体切割磁感线产生的感应电动势的大小:E=BLVsinθ.①式中若V 、L 与B 两两垂直,则E=BLV ,此时,感应电动势最大;当V 、L 与B 中任意两个量的方向互相平行时,感应电动势E=0.②若导体是曲折的,则L 应是导体的两端点在V 、B 所决定的平面的垂线上投影间的.即L 为导体切割磁感线的等效长度.③公式E=BLV 中若V 为一段时间的平均值,则E 应是这段时间内的平均感应电动势;若V 为瞬时【例1】如图9-2-1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O的过程中,环中产生的感应电动势的平均值是多大?【例2】在图9-2-2中,设匀强磁场的磁感应强度B=0.10T ,切割磁感线的导线的长度L=40cm ,线框向左匀速运动的速度V=5.0m/s ,整个线框的电阻R=0.5Ω,试求:感应电动势的大小;②感应电流的大小.【例3】如图9-2-3所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过图9-2-3图9-2-1图9-2-2值,则E 应是某时刻的瞬时值.2.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的.3.自感:(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于自感系数和本身电流变化的快慢.(3)自感电流:总是阻碍导体中原电流的变化,当自感电流是由于原电流的增加引起时,自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时,自感电流的方向与原电流的方向相同.楞次定律对判断自感电流仍适用.(4)自感系数:①大小:线圈的长度越长,线圈的面积越大,单位长度上的匝数越多,线圈的自感系数越大;线圈有铁芯时自感系数大得多.②单位:亨利(符号H),1H=103mH=106μH ③物理意义:表征线圈产生自感电动势本领大小的物理量.数值上等于通过线圈的电流在1秒内改变1安时产生的自感电动势的大小.疑难探究4.如何理解和应用法拉第电磁感应定律? 对于法拉第电磁感应定律E n t∆Φ=∆应从以下几个方面进行理解:⑴它是描述电磁感应现象的普遍规律.不管是什么原因,用什么方式所产生的电磁感应现象,其感应电动势的大小均可由它进行计算.⑵一般说来,在中学阶段用它计算的是△t 时间内电路中所产生的平均感应电动势的大小,只有当磁通量的变化率为恒量时,用它计算的结果才等于电路中产生的瞬时感应电动势.L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?【例4】如图9-2-4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .【例5】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m ,宽L 2 = 0.5m ,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg 的木块,木块放在水平面上,如图9-2-5所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s 2,求回路中的电流强度.图9-2-5图9-2-4⑶若回路与磁场垂直的面积S 不变,电磁感应仅仅是由于B 的变化引起的,那么上式也可以表述为:B E nSt ∆=∆,Bt∆∆是磁感应强度的变化率,若磁场的强弱不变,电磁感应是由回路在垂直于磁场方向上的S 的变化引起的,则SE nnB t t∆Φ∆==∆∆.在有些问题中,选用这两种表达方式解题会更简单. ⑷在理解这部分内容时应注意搞清楚:在电磁感应现象中,感应电流是由感应电动势引起的.产生感应电动势的那部分电路相当于电源,电动势的方向跟这段电路上的感应电流方向相同.当电路断开时,虽有感应电动势存在,并无感应电流,当电路闭合时出现感应电流.感应电流的大小由感应电动势的大小和电路的电阻决定,可由闭合电路的欧姆定律算出.感应电动势的大小由穿过这部分回路的磁通量变化率决定,与回路的通断,回路的组成情况无关.⑸要严格区分磁通量Φ、磁通量的变化量△Φ和磁通量的变化率t∆Φ∆这三个不同的概念. Φ、△Φ、t ∆Φ∆三者的关系尤如υ、△υ、tυ∆∆三者的关系.磁通量Φ等于磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Φ=BS,它的意义可以形象地用穿过面的磁感线的条数表示.磁通量的变化量△Φ是指回路在初末两个状态磁通量的变化量,△Φ=Φ2-Φ1.△Φ与某一时刻回路的磁通量Φ无关,当△Φ≠0时,回路中要产生感应电动势,但是△Φ却不能决定感应电动势E 的大小.磁通量的变化率t∆Φ∆表示的是磁通量变化的快慢,它决定了回路中感应电动势的大小.t∆Φ∆的大小与Φ、△Φ均无关.5.公式E=BLV 使用时应注意那些问题? ⑴公式E=BLV 是法拉第电磁感应定律的一种特殊形式,不具有普遍适用性,仅适用于计算一段导体因切割磁感线而产生的感应电动势,且在匀强磁场中B 、L 、V 三者必须互相垂直.【例6】如图9-2-6所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?【例7】如图9-2-9所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速0V 向左滑行.设棒与导轨间的动摩擦因数为μ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.图9-2-6 图9-2-9⑵当V 是切割运动的瞬时速度时,算出的是瞬时电动势;当V 是切割运动的平均速度时,算出的是一段时间内的平均电动势.⑶若切割磁感线的导体是弯曲的,L 应理解为有效切割长度,即导体在垂直于速度方向上的投影长度.⑷公式E=BLV 一般适用于在匀强磁场中导体各部分切割速度相同的情况,对一段导体的转动切割,导体上各点线速度不等,怎样求感应电动势呢?如图9-2-7所示,一长为L 的导体棒AC 绕A 点在纸面内以角速度ω匀速转动,转动区域内在垂直于纸面向里的电动势.AC 转动切割时各点的速度不等,υA =0,υC =ωL,由A 到C 点速度按与半径成正比增加,取其平均切割速度12L υω=,得212E BL BL υω==.⑸若切割速度与磁场方向不垂直,如图9—28所示,υ与B 的夹角为θ,将υ分解为:υ∥=υcosθυ⊥=υsinθ,其中υ∥不切割磁感线,根据合矢量和分矢量的等效性得E=BLV ⊥=BLVsinθ.⑹区分感应电量与感应电流.回路中发生磁通量变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t 内迁移的电量(感应电量)为E q I t t t R R t R∆Φ∆Φ=∆=∆=∆=∆ 仅由回路电阻和磁通量变化决定,与发生磁通量变化的时间无关.因此,当用一根磁棒先后两次从同一处用不同速度插至线圈中同一位置时,线圈里积聚的感应电量相等.但快插与慢插时产生的感应电动势、感应电流不同,外力做的功也不同.6.通电自感和断电自感的两个基本问题?【例8】CD 、EF 为两足够长的导轨,CE =L ,匀强磁场方向与导轨平面垂直,磁感强度为B ,导体CE 连接一电阻R ,导体ab 质量为m ,框架与导体电阻不计,如图9-2-11所示.框架平面与水平面成θ角,框架与导体ab 间的动摩擦因数为μ,求导体ab 下滑的最大速度?【例9】.如图9-2-12所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a 2的比值.图9-2-7图9-2-8图9-2-11对自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图9-2-10所示,原来电路闭合处于稳定状态,L 与A 并联,其电流分别为I L 和I A ,都是从左向右.在断开K 的瞬时,灯A 中原来的从左向右的电流I A 立即消失.但是灯A 与线圈L 组成一闭合回路,由于L 的自感作用,其中的电流I L 不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A 中有从右向左的电流通过.这时通过A 的电流是从I L 开始减弱,如果原来I L >I A ,则在灯A 熄灭之前要闪亮一下;如果原来I L ≤I A ,则灯A 逐渐熄灭不再闪亮一下.原来的I L 和I A 哪一个大,要由L 的直流电阻R L 与A 的电阻R A 的大小来决定.如果R L ≥R A ,则I L ≤I A ;如果R L <R A ,则I L >I A .典型例题答案【例1】解析:金属环在转过300的过程中,磁通量的变化量201221030sin r B BS π=-=Φ-Φ=∆Φ 又ωπωπωθ66===∆t 所以223621r B r B tE ωωππ==∆∆Φ=【例2】解析:①线框中的感应电动势 E=BLV=0.10×0.40×5.0V=0.20V ②线框中的感应电流A A R E I 40.050.020.0===【例3】解析:当PQ 滑过L/3时,PQ 中产生感应电动势为E=BLV ,它相当于此电路中的一个电源,其内电阻r=R .此时外电阻R aP =R/3,R bP =2R/3,总的外电阻为R R RR R 923231=⨯=总, 由全电路欧姆定律得到,通过PQ 的电流强度为RBLVR R BLV r R E I 11992=+=+=总; 则通过aP 的电流强度为RBLV I I aP 11632==, 方向由P 到a.【例4】解析:当S 闭合时,流经R 的电流是A —B .当S 切断瞬间,由于电源提供给R 及线圈的电流立即消失,因此线圈要产生一个和原电流方向相同的自感电动势来阻碍原电流减小,所以线圈此时相当于一个电源,产生的自感电流流经R 时的方向是B —A .【例5】解析:设磁感应强度B 的变化率tB∆∆ = k ,则B = B 0 + kt ,并根据法拉第电磁感应定律ε= N ·tB ∆∆,有:21L Lk S tB ⋅⋅=⋅∆∆=ε图9-2-10PM NQR a bF图9-2-12则感应电流 RL kL RI 21==ε 感应电流所受安培力F 安为:()2210L RL kL kt B BIL F ⋅+==安 当F 安= Mg 时木块离开水平面,即()()A R L kL I T k k k MgL RL L k kt B 4.02.05.08.02.02.01004.05.02.05.08.051212210=⨯⨯===⨯=⨯⨯⨯+=⋅⋅+∴ 感应电流的电流强度为0.4A .【例6】解析:当杆向上运动时,杆ef 受力如图9-2-7所示.由牛顿第二定律得:maF mg F =--安,mF mg F a 安--=,当F 、mg 都不变时,只要v 变大,E =BLv 就变大,REI =变大,F 安变大,从而a 变小.当v 达到某一值,则a =0,此后杆ef 做匀速运动.因此,杆ef 做加速度越来越小的加速运动,当a =0时最终匀速上升.当杆匀速上升时,有F =F 安+mg …………①F 安=BIL =Rv L B 匀22…………②由①、②式得:v 匀=()22L B R mg F -【例7】解析:(1)设滑行的距离为L 由法拉第电磁感应有tlBL t S B t Φ∆⨯=∆∆=∆∆=ε ① 而由电流定义有tqI ∆=② 由闭合电路的欧姆定律得rR I +=ε③由①②③解得q r R l BL=+⋅得lB rR q L ⋅⋅+=(2)由功能原理得20210)(mV Q W f -=-+- ④而lB rR mgq mgL W f ⋅⋅+==μμ ⑤ 所以:lB rR mgqmV Q ⋅⋅+-=μ2021 【例8】解析:由能的转化和守恒定律知,当导体ab 以最大速度v m 匀速运动以后,导体ab 下滑过程中,减少的重力势能(机械能)等于克服摩擦力所做的功和电阻R 产生的热量,并设以最大速度运动的时间为t ,则:mgsin θ·(v m t )= μmgcos θ·(v m t ) +I 2Rt mgsin θ·(v m t ) =μmgcos θ·(v m t ) +Rt R v l B m2222 解得:()22cos sin l B mgR v m θμθ-=【例9】解析:F 恒定,当金属棒速度为2v 时:RvL B L BI F 2222== 当金属棒速度为v 时: mRv L B a ma R vL B R v L B ma L BI F 22112222112==-=- F 功率恒定,设为P .当金属棒速度为2v 时:R v L B v F P 222242==当金属棒速度为v 时: mRv L B a ma Rv L B v P ma L BI F 2222222113==-='- 则:3121=a a图9-2-针对练习 1.在电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是( )A .穿过线圈的磁通量越大,感应电动势越大B .穿过线圈的磁通量为零,感应电动势一定为零C .穿过线圈的磁通量变化越大,感应电动势越大D .穿过线圈的磁通量变化越快,感应电动势越大2.如图9-2-13所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是()A .合上开关S 接通电路时,A 2先亮,A 1后亮,最后一样亮B .合上开关S 接通电路时,A 1和A 2始终一样亮C .断开开关S 切断电路时,A 2立刻熄灭,A 1过一会儿才熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭3. (2006年潍坊市高三统一考试)如图9-2-14所示,a 、b 是平行金属导轨,匀强磁场垂直导轨平面,c 、d 是分别串有电压表和电流表的金属棒,它们与导轨接触良好,当c 、d 以相同的速度向右运动时,下列说法正确的是()A.两表均无读数B.两表均有读数C.电流表有读数,电压表无读数D.电流表无读数,电压表有读数4.如图9-2-15示,甲中有两条不平行轨道而乙中的两条轨道是平行的,其余物理条件都相同.金属棒MN 都正在轨道上向右匀速平动,在棒运动的过程中,将观察到 ( )A .L 1,L 2小电珠都发光,只是亮度不同B .L l ,L 2都不发光C .L 2发光,L l 不发光D .L l 发光,L 2不发光5.(连云港2006年第一学期期末调研考试)如图9-2-16所示,AOC 是光滑的直角金属导轨,AO 沿竖直方向,OC 沿水平方向,ab 是一根金属直棒,如图立在导轨上(开始时b 离O 点很近).它从静止开始在重力作用下运动,运动过程中a 端始终在AO 上,b 端始终在OC 上,直到ab 完全落在OC 上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab 棒在运动过程中( )A.感应电流方向始终是b→aB.感应电流方向先是b→a,后变为a→bC.受磁场力方向垂直于ab 向上D.受磁场力方向先垂直ab 向下,后垂直于ab 向上6.如图9-2-17所示,在两平行光滑导体杆上,垂直放置两导体ab 、cd ,其电阻分别为R l 、R 2,且R 1<R 2,其他电阻不计,整个装置放在磁感应强度为B 的匀强磁场中.当ab 在外力F l 作用下向左匀速运动,cd 则在外力F 2作用下保持静上,则下面判断正确的是( )A .F l >F 2,U ab >U abB .F l =F 2,U ab =U cdC .F 1<F 2,U ab =U cdD .F l =F 2,U ab <U cd图9-2-17图9-2-14图9-2-13 图9-2-16A CabO图9-2-15单元达标1.穿过闭合回路的磁通量φ随时间t变化的图象分别如图9-2-18①~④所示,下列关于回路中产生的感应电动势的论述,正确的是( )A.图①中回路产生的感应电动势恒定不变B.图②中回路产生的感应电动势一直在变大C.图③中回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势D.图④中回路产生的感应电动势先变小再变大2.如图9-2-19所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域.当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E,则a、b两点间的电势差为:()A.E21B.E31C.E32D.E3.水平放置的金属框架cdef处于如图9-2-20所示的匀强磁场中,金属棒ab置于粗糙的框架上且接触良好.从某时刻开始磁感应强度均匀增大,金属棒ab始终保持静止,则()A.ab中电流增大,ab棒受摩擦力也增大B.ab中电流不变,ab棒受摩擦力也不变C.ab中电流不变,ab棒受摩擦力增大D.ab中电流增大,ab棒受摩擦力不变4.如图9-2-21所示,让线圈由位置1通过一个匀强磁场的区域运动到位置2,下述说法中正确的是:()A.线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入时的速度越大,感应电流越大B.整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的C.整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大D.线圈穿出匀强磁场区域的过程中,线圈中有感应电流,而且感应电流越来越大5.如图9-2-22中所示电路,开关S原来闭合着,若在t1时刻突然断开开关S,则于此时刻前后通过电阻R1的电流情况用图9-2-23中哪个图像表示比较合适()6.如图9-2-24所示,一宽40cm的匀强磁场图9-2-22图9-2-20图9-2-19图9-2-18××××××××××××1 2图9-2-21图9-2-23区域,磁场方向垂直纸面向里,一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s通过磁场区域,在运动过程中,线框中有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t=0,在图9-2-25的图线中,正确反映感应电流强度随时间变化规律的是()7.如图9-2-26所示,一闭合小铜环用绝缘细线悬挂起来,铜环从图示位置静止释放,若不计空气阻力,则()A.铜环进入或离开磁场区域时,环中感应电流方向都沿顺时针方向B.铜环进入磁场区域后,越靠近OO′位置速度超大,产生的感应电流越大C.此摆的机械能不守恒D.在开始一段时间内,铜环摆动角度逐渐变小,以后不变8.如图9-2-27所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则()A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时已停下C.线圈能通过场区不会停下D.线圈在磁场中某个位置停下9.如图9-2-28所示,水平金属导轨足够长,处于竖直向上的匀强磁场中,导轨上架着金属棒ab,现给ab一个水平冲量,ab将运动起来,最后又静止在导轨上,对此过程,就导轨光滑和粗糙两种情况比较有()A.安培力对ab棒做功相等B.电流通过整个回路做功相等C.整个回路产生的热量相等D.两棒运动的路程相等10.如图9-2-29所示,两个相同的线圈从同一高度自由下落,途中在不同高度处通过两处高度d 相同、磁感应强度B相等的匀强磁场区域后落到水平地面上,则两线圈着地时动能E Ka、E Kb的大小和运动时间t a、t b的长短关系是()A.E Ka=E Kb,t a=t bB.E Ka>E Kb,t a>t bC.E Ka>E Kb,t a<t bD.E Ka<E Kb,t a<t b图9-2-29图9-2-28图9-2-27图9-2-24图9-2-25图9-2-2611.如图9-2-30所示,导体ab 可无摩擦地在足够长的处在匀强磁场中的竖直导轨上滑动,除电阻R 外,其余电阻不计,在ab 下落过程中,试分析(1)导体的机械能是否守恒.________ (2)ab 达到稳定速度之前,其减少的重力势能________(填“大于”“等于”或“小于”)电阻R 上产生的内能.12.如图9-2-31所示,两反向匀强磁场宽均为L ,磁感应强度均为B ,正方形线框边长也为L ,电阻为R ,当线框以速度v 匀速穿过此区域时,外力所做的功为________.图9-2-30图9-2-31。
自感的原理及应用自感是一种电磁现象,当电流通过一个线圈时,产生的磁场会导致自感。
自感的原理是根据法拉第电磁感应定律,即根据电磁场的变化,产生感应电动势。
自感是由线圈的感应现象导致的,当电流通过线圈时,线圈内外都会产生磁场,磁场的变化会导致线圈内部产生感应电势。
具体来说,当电流通过线圈时,电流的流动会产生一个磁场。
磁场的强度与电流的大小成正比,与线圈的匝数成正比,与线圈的形状有关。
当电流改变时,磁场也会随之改变。
根据法拉第电磁感应定律,磁场的变化会导致线圈内部产生感应电势。
这种感应电势的方向与电流改变的方向相反,即阻碍电流改变的方向。
这就是自感的原理。
自感的应用非常广泛。
以下是一些常见的应用:1. 电感器:自感可以用于制造电感器。
电感器是一种用于储存和释放电能的元件。
当外部电流通过电感器时,电流会在电感器中产生一个磁场,随着时间的推移,电感器中的磁场储存了一定的电能。
当外部电流断开时,磁场会逐渐消失,释放储存的电能。
电感器广泛用于电子电路中,例如滤波器、振荡器等。
2. 高压变压器:自感也被广泛应用于高压变压器中。
高压变压器是一种用于改变电压的装置。
它是由一个输入线圈和一个输出线圈组成的。
当输入线圈中的电流改变时,由于自感的作用,会产生感应电势。
这个感应电势会在输出线圈中产生一个与输入线圈不同的电压。
通过调整输入输出线圈的匝数比,可以实现不同程度的电压变换。
3. 发电机和变压器:自感也是发电机和变压器中的重要组成部分。
发电机是将机械能转化为电能的装置,而变压器则是用于改变电压的装置。
在发电机和变压器中,线圈中的自感起到了重要的作用。
当电流通过线圈时,产生的磁场会导致感应电势,从而输出电能。
4. 电磁炉:自感也被广泛应用于电磁炉中。
电磁炉是一种利用电磁感应加热的设备。
通过通过变化的电流产生的变化磁场,感应炉内的金属锅具中的电流。
锅具中的电流会产生热量,从而加热食物。
电磁炉具有高效、精确控温等优点,广泛应用于家庭和商业厨房。