霍尔效应实验报告
- 格式:doc
- 大小:83.50 KB
- 文档页数:4
霍尔效应的研究实验报告实验报告:霍尔效应的研究摘要:本实验通过测量铜箔和σ-Fe薄膜的霍尔效应,研究磁场下的电子运动和磁场效应。
实验结果表明,在磁场的作用下,霍尔电阻Rxy的大小与电流I的正向方向、磁感应强度B及样品厚度d有关,且与样品材料的导电性质、载流子浓度n、载流子类型p、n有关。
引言:霍尔效应是指在外加磁场下,垂直于电流方向的方向会发生电势差,这种电势差所对应的电阻称为霍尔电阻。
该现象广泛应用于电子学、材料科学等领域。
本实验旨在通过实验验证霍尔效应,并深入研究磁场对电子运动和电阻的影响。
实验步骤和方法:1.制备实验样品:分别用化学方法制备铜箔和σ-Fe薄膜样品。
2.测量实验样品的电阻率:用四端子法测量样品的电阻率ρ。
3.测量霍尔效应:在磁场作用下,用直流电流源给样品加电流I,并在样品表面检测到的霍尔电势差UH作为其霍尔电阻Rxy。
4.测量实验数据:通过数据处理对实验结果进行定量分析,并进行结果分析与比较。
结果:1.铜箔和σ-Fe薄膜样品的电阻率分别为2.5×10-8 Ω·m和2.0×10-7 Ω·m。
2.在外加磁场下,两种材质的霍尔电势差UH分别变化,随磁感应强度B增大而增大。
霍尔电阻Rxy的大小与磁场强度B、电流I梦想方向、样品厚度d、载流子密度n和载流子类型p、n有关。
3.样品材质、载流子密度n、载流子类型p、n对样品的Rxy和UH的大小都有一定影响,导电性质较差、载流子密度较低的材料霍尔效应较小。
分析:1.样品的电阻率与样品材质的导电性质有关,样品的Rxy和UH与样品材料及其性质有关。
2.载流子密度n是决定材料电导率的关键因素之一,导电性质优越的材料,其载流子密度较高,霍尔电阻和霍尔电势差都会增大。
3.磁感应强度B的增大清楚样品中载流子受到的场强增大,样品中的霍尔电阻和霍尔电势差增大。
结论:本实验研究了霍尔效应的特性及其与样品的相关性,结果表明,在外加磁场下,铜箔和σ-Fe薄膜均出现了霍尔效应,其相应的霍尔电阻和霍尔电势差都与材料性质、载流子密度、磁感应强度等因素有关。
霍尔效应实验报告篇一:霍尔效应实验报告篇二:霍尔效应的应用实验报告一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。
3.学习利用霍尔效应测量磁感应强度B 及磁场分布。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
三、器材:1、实验仪:(1)电磁铁。
(2)样品和样品架。
(3)Is和IM 换向开关及VH 、Vó切换开关。
2、测试仪:(1)两组恒流源。
(2)直流数字电压表。
四、原理:霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场EH。
如图15-1所示的半导体试样,若在X方向通以电流IS ,在Z方向加磁场B,则在Y方向即试样A-A/ 电极两侧就开始聚集异号电荷而产生相应的附加电场。
电场的指向取决于试样的导电类型。
对图所示的N型试样,霍尔电场逆Y方向,(b)的P型试样则沿Y方向。
即有EH0EH0显然,霍尔电场EH是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH与洛仑兹力eB相等,样品两侧电荷的积累就达到动态平衡,故eEH?eB (1)其中EH为霍尔电场,v是载流子在电流方向上的平均漂移速度。
设试样的宽为b,厚度为d,载流子浓度为n ,则IS?nebd(2)由(1)、(2)两式可得:VH1ne?EHb?1ISBned?RHISBd即霍尔电压VH(A 、A/电极之间的电压)与ISB乘积成正比与试样厚度d成反比。
比例系数RH?称为只要测出VH (伏)以及知道IS(安)、B(高斯)和d (厘米)可按下式计算RH(厘米3/库仑):RH=VHdISB?108(4)上式中的108是由于磁感应强度B用电磁单位(高斯)而其它各量均采用CGS实用单位而引入。
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。
则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。
电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。
当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。
霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。
又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。
将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。
三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。
四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。
2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。
3、测量霍尔电压接通电源,让电流通过霍尔元件。
分别测量不同电流和磁场强度下的霍尔电压,并记录数据。
4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。
5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。
五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
霍尔效应实验报告引言:霍尔效应是指当电流通过垂直于电流方向的导电体时,会产生横向电势差(Hall voltage)。
通过研究霍尔效应,可以了解材料的电性质,并在磁传感器、霍尔元件等领域得到应用。
本实验旨在通过测量霍尔效应的相关参数,深入了解其原理和特性。
实验材料与仪器:1. 霍尔片:选用精确的霍尔片,并保证其表面电阻低于10 Ω;2. 磁铁:用于产生磁场,保证其磁场均匀且稳定;3. 恒流源:用于提供稳定的电流;4. 毫伏表:用于测量霍尔电压;5. 恒温槽:用于控制实验环境温度。
实验原理:当电流通过霍尔片时,由于霍尔片内产生的洛伦兹力,电子受力方向与电流方向成正交关系,从而形成电子在导电体中的漂移运动。
此过程中,电子受力方向受磁场和电荷载流方向的共同作用。
当磁场、电流和电子漂移方向垂直时,会在导体一侧产生电势差,即霍尔电压。
实验步骤:1. 将霍尔片固定在实验台上,并将磁铁与霍尔片垂直放置;2. 连接恒流源,并设置电流大小;3. 通过毫伏表测量霍尔电压,并记录;4. 重复步骤2和3,改变电流大小,记录相应的霍尔电压;5. 在实验过程中,保持实验环境温度恒定,使用恒温槽进行控制。
实验数据及结果:按照上述步骤进行实验,依次记录不同电流值下的霍尔电压。
随后,根据实验数据绘制电流与霍尔电压之间的关系曲线图,并进行数据分析。
分析与讨论:通过实验数据的分析,我们可以得到以下几个结论:1. 霍尔电压与电流存在线性关系,电流越大,霍尔电压也越大;2. 霍尔电压与磁场的关系是非线性的,且磁场强度越大,霍尔电压也越大;3. 霍尔电压与温度存在一定的关系,随着温度的升高,霍尔电压会变化。
以上结论验证了霍尔效应的基本原理。
当电流通过霍尔片时,受到磁场的作用,电子受到洛伦兹力的驱动,从而产生横向电势差。
而电势差的大小与电流、磁场以及温度等因素有关。
实验误差分析:在实验过程中,由于外界环境的干扰以及仪器的精度等原因,会产生一定的误差。
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应实验报告k h霍尔效应实验报告kh篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的VH?Is,V H?IM曲线了解霍尔电势差VH与霍尔元件控制(工作)电流Is、励磁电流IM之间的关系。
3、学习利用霍尔效应测量磁感应强度B及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X 正向通以电流Is(称为控制电流或工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流Is相反的X负向运动。
由于洛伦兹力fL的作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fE的作用。
随着电荷积累量的增加,fE增大,当两力大小相等(方向相反)时,fL=-fE,则电子积累便达到动态平衡。
霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
实验报告霍尔效应一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中,当在薄片的纵向通以电流时,在薄片的横向两侧会产生一个电位差,这种现象称为霍尔效应。
这个电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的产生是由于运动的载流子在磁场中受到洛伦兹力的作用而发生偏转,在薄片的两侧积累了正负电荷,从而形成了电场。
当电场力与洛伦兹力达到平衡时,电荷的积累停止,霍尔电压达到稳定值。
2、霍尔电压的计算设半导体薄片的厚度为$d$,载流子的浓度为$n$,电流为$I$,磁感应强度为$B$,则霍尔电压$U_H$ 可以表示为:\U_H =\frac{1}{nq}IBd\其中,$q$ 为载流子的电荷量。
3、测量磁场如果已知半导体薄片的参数(如载流子浓度$n$、薄片厚度$d$)以及通过的电流$I$,测量出霍尔电压$U_H$,就可以计算出磁感应强度$B$:\B =\frac{nqdU_H}{I}\三、实验仪器1、霍尔效应实验仪,包括霍尔元件、电磁铁、电源、电压表、电流表等。
2、特斯拉计,用于测量磁场强度。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪的各个部分,确保连接正确无误。
2、调整磁场打开电磁铁电源,逐渐增加电流,使磁场强度逐渐增大。
使用特斯拉计测量磁场强度,并记录下来。
3、测量霍尔电压(1)保持磁场强度不变,改变通过霍尔元件的电流$I$,分别测量不同电流下的霍尔电压$U_H$,记录数据。
(2)保持电流$I$ 不变,改变磁场强度,测量不同磁场强度下的霍尔电压$U_H$,记录数据。
4、数据处理(1)根据测量的数据,绘制霍尔电压$U_H$ 与电流$I$ 的关系曲线。
(2)绘制霍尔电压$U_H$ 与磁场强度$B$ 的关系曲线。
(3)根据实验原理中的公式,计算出半导体薄片的载流子浓度$n$ 和薄片厚度$d$。
霍尔效应实验报告(附带实验结论)(总3页)实验内容:实验中我们将会介绍霍尔效应,包括霍尔现象背后的原理,如何建立实验并如何分析实验结果。
霍尔效应是一个经典的材料物理学现象,主要是指当一个电流通过一块具有特殊形状的半导体晶体时,在晶体内部会产生一个垂直于电流方向和晶面法向的电场。
这个电场会导致从侧面进入材料的一个外部磁场中电荷载流子弯曲轨迹,从而引起电荷载流子的偏转和最终的偏差。
霍尔效应实验是通过使用霍尔元件来测量材料中电子的电荷密度、电阻率以及磁感应强度等物理量。
通过使用一个差分放大器来隔离高电阻元件所测量的低电压信号,实现误差最小化。
实验原理:霍尔现象是指当一个电流通过材料时,电荷载流子会遭受到一个垂直于电流方向和晶面法向的洛伦兹力。
这个力是由外磁场和载流子的运动速度所决定。
通过等效电路模型来表示这个效应,可以得出以下公式:$R_H=\frac{V_H}{IB}$其中$R_H$是霍尔系数,$V_H$是霍尔电压,$I$是传输电流,$B$是外磁场的磁感应强度。
实验步骤:1、使用霍尔元件进行实验测量。
首先我们将要求对外磁场变量进行变动。
我们将会使用自制的霍尔元件来测量材料的电阻率和磁感应强度。
此外我们还需要在实验中加入一个电压测量电路和一个高阻放大器,以便测量霍尔电压。
2、调整电路和实验装置,确保高电阻元件测得的信号能够被放大器隔离并接收到计算机来进行数据采集和分析。
3、进行霍尔效应实验并测量霍尔电压。
当电流通过材料时,霍尔电压会在样品上产生。
我们会使用磁感应计来测量磁场的强度,并利用霍尔元件来测量霍尔电压。
为了确保测量精度和可靠性,我们需要在实验期间不断进行复位校准。
实验结果:我们执行了多次霍尔效应实验,每次实验中都测得了数据。
我们将测得的数据进行了计算,并绘制了以下的实验曲线。
经过分析实验结果,我们得出以下重要结论:1、随着磁感应强度的增加,电流的方向和样品中霍尔电压的值都会发生变化。
2、我们在实验中发现,霍尔元件的特性随着温度和磁场强度的变化而变化。
霍尔效应实验
一、实验目的
1.霍尔效应原理及霍尔元件有关参数的含义和作用
2.测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。
3.学习利用霍尔效应测量磁感应强度B及磁场分布。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
二、实验仪器
霍尔效应实验仪器和测试仪
三、实验原理
运动的带电粒子在磁场中受洛仑兹力的作用而引起偏转,当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场(霍尔电场),这就是霍尔效应的本质。
由于产生霍尔效应的同时,伴随多种副效应,以致实测的霍尔电场间电压不等于真实的V H值,因此必需设法消除。
根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。
具体的做法是Is和B(即I M)的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的Is和B(即I M)时的V1,V2,V3,V4,
1)+I s+B V1
2)+I s-B V2
3)-I s-B V3
4)-I s+B V4
然后求它们的代数平均值,可得:
4
4 3
2 1
V V
V
V
V
H
-+
-
=
通过对称测量法求得的VH误差很小。
四、实验步骤
1.测量霍尔电压VH与工作电流Is的关系
1)先将Is,I M都调零,调节中间的霍尔电压表,使其显示为0mV。
2)将霍尔元件移至线圈中心,调节IM =0.45A,按表中所示进行调节,测量当I M正(反)向时, I S正向和反向时的V H值填入表1,做出V H-I S曲线。
表1 VH-IS 关系测量表 IM =0.45A
2.测量霍尔电压V H与励磁电流I M的关系
1)先将Is调节至4.50mA。
2)调节励磁电流I M如表2,分别测量霍尔电压V H值填入表2中。
3)根据表2中所测得的数据,绘出I M—V H曲线
表2 V H—I M关系测量表I S =4.50mA
五、实验结论
1、当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,
通过作图发现二者之间也满足线性关系。
2、当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,
通过作图发现二者之间满足线性关系。
六、实验中的注意问题
1、不要带电接线,中间改变电路时,一定要先关闭电源,再连接电路。
2、实验完成后要整理实验仪器,先关闭电源,再将电线拆下,捋好后放在实验仪器的右侧。
3、作图要使用铅笔,先描点,描点要清晰,然后使用平滑曲线连接各点。
七、思考题
1、实验的原理是什么?
答:法拉第电磁感应原理。
2、对探测线圈的要求是什么?
答:线圈面积要大小合适,太大无法反映各点磁场的情况,太小则感应电压小,不利于测量。
3、感应法测磁场为什么不用一般的电压表?
答:因为被测量的电压是交流毫伏量级。
4、是否能利用本方法测量稳恒磁场?
答:不能,因为根据法拉第电磁感应原理静止探测线圈在稳恒磁场中感应电动势为零。