八年级数学北师大版上册轴对称与坐标变化
- 格式:pptx
- 大小:289.11 KB
- 文档页数:22
北师大版数学八年级上册3《轴对称与坐标变化》教学设计3一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。
本节课主要介绍了轴对称的性质以及坐标变化中的平移和旋转。
教材通过丰富的实例和图片,引导学生探索轴对称的性质,让学生在实际操作中感受坐标变化带来的几何图形的变换。
教材内容紧密联系实际,有助于激发学生的学习兴趣,提高学生的动手操作能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但轴对称和坐标变化的知识较为抽象,学生需要通过实际操作和观察来进一步理解和掌握。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与,提高学生的动手操作和观察能力。
三. 教学目标1.理解轴对称的性质,能够判断一个图形是否为轴对称图形。
2.掌握坐标变化中的平移和旋转,能够运用坐标变化解决实际问题。
3.培养学生的观察能力、动手操作能力和解决问题的能力。
四. 教学重难点1.轴对称的性质及判断。
2.坐标变化中的平移和旋转的性质及运用。
五. 教学方法1.情境教学法:通过实际例子和图片,引发学生的兴趣,激发学生的学习欲望。
2.动手操作法:让学生亲自动手,进行实际的轴对称和坐标变换操作,提高学生的动手能力。
3.小组合作法:引导学生分组讨论和合作,培养学生的团队意识和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于导入和讲解。
2.准备坐标纸和绘图工具,供学生动手操作。
3.准备练习题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际例子和图片,如剪纸、建筑物的设计等,引导学生思考这些实例中的共同特点。
学生通过观察和思考,发现这些实例都具有轴对称的性质。
教师总结轴对称的定义,并提出本节课的学习目标。
2.呈现(15分钟)教师通过讲解和演示,介绍轴对称的性质,如对称轴的定义、对称点的坐标关系等。
同时,教师引导学生进行实际的坐标变换操作,如平移和旋转,让学生感受坐标变化带来的图形变换。
八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。
这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。
本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。
二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。
但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。
三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。
2.难点:如何运用坐标来表示图形的轴对称变换。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。
六. 教学准备1.教师准备:教材、课件、教学素材等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。
3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。
4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。
5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
3.3轴对称与坐标变化知识精讲图形的平移1.在平面直角坐标系中,图形上各点的纵坐标不变,横坐标分别加上(或减去)一个正数a,则图形沿水平方向向右(或向左)平移a个单位长度,图形形状、大小不变.2.在平面直角坐标系中,图形上各点的横坐标不变,纵坐标分别加上(或减去)一个正数b,则图形向上(或向下)平移b个单位长度,图形形状、大小不变.横坐标(x)纵坐标(y)左右向左移动n个单位长度(n>0),横坐标变为x n-不变向右移动n个单位长度(n>0),横坐标变为x n+上下不变向上移动n个单位长度(n>0),纵坐标变为x n+向下移动n个单位长度(n>0),纵坐标变为x n-割分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可.补补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分.三点剖析一.考点:用坐标表示地理位置,坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.二.重难点:坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.三.易错点:1.平行移动最关键的是掌握平移的方向与坐标变化之间的关系,可以用口诀形式表示:横坐标,右移加,左移减;纵坐标,上移加,下移减;2.求面积时,优先考虑补的方法,通常补成一个长方形或者梯形,之后再相减求解即可;3.计算坐标系内图形的面积时,平行或垂直于坐标轴直线上的两个点之间的距离,用横坐标之差的绝对值或者纵坐标之差的绝对值表示.用坐标表示地理位置例题1、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1)【答案】两栖动物(6,2);狮子(-2,6);飞禽(5,5)【解析】如图所示:南门(2,1),两栖动物(6,2),狮子(-2,6),飞禽(5,5).随练1、如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D【解析】①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-5,-2)时,表示左安门的点的坐标为(11,-11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5),此结论正确.坐标系内图形的变换例题1、把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为________。
八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。
这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。
教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。
同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。
同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。
但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。
三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。
2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。
2.教学难点:如何用坐标来表示轴对称的变换。
五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。
2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。
六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。
2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。
3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。
4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。
5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。