《光学实验》牛顿环实验
- 格式:ppt
- 大小:491.50 KB
- 文档页数:21
牛顿环和劈尖干涉实验报告牛顿环和劈尖干涉实验报告引言:光学是一门研究光的传播和性质的学科,而干涉实验则是光学中重要的实验手段之一。
本次实验旨在通过观察牛顿环和劈尖干涉实验现象,探究光的干涉现象及其原理。
一、牛顿环实验牛顿环实验是一种观察薄膜干涉现象的经典实验。
实验中,我们使用了牛顿环装置,即一块平凸透镜与一块平凹透镜相接触,形成一层薄膜。
通过照射白光,我们可以观察到一系列彩色的环状条纹。
牛顿环的形成是由于光的干涉现象。
当光线从空气进入到透明介质中时,会发生折射。
在透镜与薄膜接触的表面,由于介质折射率的变化,光线会发生反射和折射,形成反射和折射光波的干涉。
这种干涉现象导致了光的干涉条纹的形成。
牛顿环实验中,我们可以观察到一系列同心圆环,每个环的亮暗程度不同。
这是由于光的干涉现象导致的。
光线在透镜与薄膜接触表面发生反射和折射后,由于相位差的存在,不同波长的光会发生干涉,形成亮暗相间的条纹。
而圆环的大小则与光的波长和相位差有关。
二、劈尖干涉实验劈尖干涉实验是一种观察光的干涉现象的实验,通过劈尖形状的玻璃片,我们可以观察到一系列干涉条纹。
在劈尖干涉实验中,我们使用了一块劈尖形状的玻璃片。
当平行光通过劈尖玻璃片时,由于玻璃的折射率不均匀,光线会发生反射和折射,形成干涉现象。
我们可以观察到一系列亮暗相间的条纹。
劈尖干涉实验中,条纹的形成与光的干涉现象有关。
光线在劈尖玻璃片表面发生反射和折射后,由于相位差的存在,不同波长的光会发生干涉,形成亮暗相间的条纹。
而条纹的间距则与光的波长和相位差有关。
结论:通过牛顿环和劈尖干涉实验,我们可以观察到光的干涉现象,并了解到干涉现象的原理。
光的干涉现象是光学中重要的现象之一,对于研究光的性质和应用具有重要意义。
通过实验,我们更深入地理解了光的干涉现象,并对光学的研究有了更深入的认识。
在实验过程中,我们还发现了光的波动性质和光的相位差对干涉现象的影响。
这些发现对于进一步研究光的干涉现象和应用具有指导意义。
实验 用牛顿环干涉测透镜曲率半径(一)目的:1、掌握用牛顿环测定透镜曲率半径的方法。
2、通过实验加深对等厚干涉原理的理解。
(二)仪器和用具:移测显微镜(JCD 3型)、钠灯牛顿环仪是由待测平凸透镜(凸面曲率半径约为200~300c m〕L和磨光的平玻璃板P叠合装在金属框架F中构成。
框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置。
调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。
(三)原理:当一曲率半径很大的平凸透镜的凸面与一磨光平玻璃板相接触时,在透镜的凸面与平玻璃板之间将形成一空气薄膜,离接触点等距离的地方,厚度相同。
如图9-2所示,若以波长为的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将互相干涉,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。
在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑(图a );如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环(图b),这种干涉现象最早为牛顿所发现,故称为牛顿环。
设透镜L的曲率半径为R ,形成的m 级干涉暗条纹的半径为r m,m 级干涉亮条纹的半径为r m’,不难证明r m =λmRr m’=2)12(λ⋅−R m 以上两式表明,当已知时,只要测出D 第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出λ。
但由于两接触镜面之间难免附着尘埃,并且在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆面,所以近圆心处环纹比较模糊和粗阔,以致难以确切判定环纹的干涉级数m ,即干涉环纹的级数和序数不一定一致。
这样,如果只测量一个环纹的半径,计算结果必然有较大的误差。
为了减少误差,提高测最精度,必须测量距中心较远的、比较清晰的两个环纹的半径,例如测量出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1,m 2均为环序数,不一定是干涉级数),因而(9-1)式应修正为r m2 =(m+j )R λ式中m 为环序数,(m +j )为干涉级数(j 为干涉级修正值),于是λλR m m R j m j m r r m m )()]()[(12122212−=+−+=− 上式表明,任意两环的半径平方差和干涉级以及环序数无关,而只与两个环的序数之差(m 2-m 1)有关。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
这些反射和透射光会相互干涉,形成明暗相间的条纹,这就是牛顿环。
三、实验步骤1、调整分光仪,使一束光通过玻璃棱镜,分成两束相干光,并在空间叠加。
2、调整分光仪的望远镜,观察到清晰的牛顿环。
3、使用读数显微镜测量牛顿环的直径,并记录下来。
4、改变分光仪的棱镜角度,观察干涉条纹的变化,并记录下来。
5、分析实验数据,得出结论。
四、实验结果与分析1、实验结果在实验中,我们观察到了清晰的牛顿环干涉现象,并且使用读数显微镜测量了牛顿环的直径。
随着分光仪棱镜角度的变化,干涉条纹也会发生变化。
2、结果分析通过实验数据,我们可以得出以下(1)牛顿环是由两束相干光在空间叠加而形成的干涉现象。
(2)干涉条纹的明暗交替是由于两束光的相位差引起的。
(3)通过测量牛顿环的直径,我们可以计算出光波的波长。
(4)随着分光仪棱镜角度的变化,干涉条纹会发生变化,这是因为光的波长和入射角发生了变化。
五、结论通过本次实验,我们深入了解了干涉现象与光波的波动性质,学习了使用分光仪、读数显微镜的方法。
这对于我们今后在光学领域的研究具有重要意义。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
第1篇一、实验背景牛顿环实验是光学中的一个经典实验,通过观察和分析牛顿环现象,可以深入了解光的干涉原理,并应用于测量透镜的曲率半径等实际应用中。
牛顿环实验的核心原理是等厚干涉现象,即在薄膜层厚度相同的位置,光波发生干涉,形成明暗相间的条纹。
二、实验原理1. 牛顿环的形成牛顿环实验装置主要由一块曲率半径较大的平凸透镜和一块光学玻璃平板组成。
当平凸透镜的凸面与平板接触时,在接触点附近形成一层空气膜。
当平行单色光垂直照射到牛顿环装置上时,光在空气膜的上、下表面反射,形成两束光波。
这两束光波在空气膜上表面相遇,产生干涉现象。
2. 等厚干涉现象在牛顿环装置中,空气膜的厚度从中心到边缘逐渐增加。
由于空气膜厚度相同的位置对应于同一干涉条纹,因此这种现象称为等厚干涉。
根据等厚干涉原理,厚度相同的位置,光程差也相同,从而形成明暗相间的干涉条纹。
3. 牛顿环的干涉条件在牛顿环装置中,光在空气膜上、下表面反射的两束光波发生干涉,干涉条件为:Δ = mλ其中,Δ为光程差,m为干涉级次,λ为光波长。
4. 牛顿环的半径与透镜曲率半径的关系设牛顿环装置中第m级暗环的半径为rk,透镜的曲率半径为R,空气膜厚度为e,则有:rk^2 = R^2 - e^2由上式可知,通过测量牛顿环的半径rk,可以计算出透镜的曲率半径R。
三、实验步骤1. 准备实验装置,包括牛顿环仪、钠光灯、凸透镜、平板玻璃等。
2. 将牛顿环仪放置在实验台上,调整透镜与平板玻璃之间的距离,使牛顿环清晰可见。
3. 打开钠光灯,调整显微镜的焦距,使牛顿环图像清晰。
4. 测量第m级暗环的半径rk,重复多次测量,求平均值。
5. 根据测量结果,利用上述公式计算透镜的曲率半径R。
四、实验结果与分析通过实验测量,可以得到一系列牛顿环的半径rk。
根据实验原理,可以计算出透镜的曲率半径R。
通过对比实际值与测量值,可以分析实验误差,并探讨提高实验精度的方法。
五、实验结论牛顿环实验是一种经典的干涉实验,通过观察和分析牛顿环现象,可以深入了解光的干涉原理,并应用于测量透镜的曲率半径等实际应用中。
牛顿环测透镜的曲率半径。
1、用牛顿环干涉测透镜曲率半径时,照在牛顿环仪上的钠光是()A.扩展光B.平行光C.会聚光D.漫反射光2、用显微镜测牛顿环时,同方向转动鼓轮中途不可倒转,这是因为()A、消除螺距差 B. 减小调节误差C. 测量方便D. 测微鼓轮刻度不均匀3、本学期实验中,你所测到的牛顿环仪上平凸透镜的曲率半径为( )A. 25cmB.1.5mC.3.0mD.3.5m4、在光的干涉实验中,读数显微镜在测量时只能朝一个方向前进,其目的是()A.测量方便B.消除读数显微镜的空程差C.消除读数显微镜的视差D.避免眼睛疲劳5、用牛顿环测量半凸透镜曲率半径时,对实验结果有影响的是()A.牛顿环中心是亮斑而不是暗斑B.测量直径时,叉丝交点没有通过环心C.测量直径时,测微鼓轮中途倒转D.测量直径时,测微鼓轮中途不倒转,只向一个方向旋转。
6、不是助视光学仪器的是()A.移测显微镜B. 短焦距望远镜C.测微目镜D.平行光管7、在牛顿环干涉实验中,对测量结果有较大影响的操作步骤是()A.牛顿环仪未固定好B.测量中读数显微镜的读数鼓轮不是始终朝一个方向转动C.读数显微镜调焦不是最清晰D.牛顿环仪未处于读数显微镜正下方,发生半波损8、牛顿环装置如图所示,共有四个反射面(图中1、2、3、和4)失的反射面是( )9、下列存在回程差的实验仪器是什么? ( )A.螺旋测微计B.读数显微镜C. 分光计D. 以上三个都是10、牛顿法的干涉条纹应当以凸透镜与平板玻璃的接触点为圆心的同心圆,实际。
上多数情况是出现一个大黑斑。
下列说法正确的是()A.凸透镜与平板玻璃压得太紧B.接触处有灰尘;C.黑斑的出现对实验结果有影响D.黑斑的出现对实验结果无影响(多选) A.反。
11、在看清叉丝的情况下只看到钠黄光,看不到牛顿环。
原因可能是()射镜位置放备 B.牛顿环装翼的位置不恰当C.物镜聚焦不对 D.目镜聚焦不对12、牛顿环测曲率半径实验中,观测到的同心干涉圆环是什么干涉?()A. 等倾干涉B. 非定域干涉C. 等厚干涉D. 双缝干涉13、牛顿环测曲率半径实验中,观测到的同心干涉圆环的疏密分布是什么?( )A. 均匀分布B. 从内到外逐渐变得稀疏C. 从内到外逐渐变得密集D. 无规律的14、在牛顿环实验中,所用的光源是什么?( )A. 高压汞灯B. 低压汞灯C. 白炽灯D. 钠光灯15、牛顿环实验中,我们取两环直径的平方差,是为了什么?( )A. 简化计算B. 减小偶然误差C. 减小系统误差D. 避免空程误差16、牛顿干涉条纹中心是高级次还是低级次?为什么?牛顿干涉条纹间距如何变化?为什么?17、牛顿环的各环是否等宽环的密度是否均匀? 具体如何?如何解释 ?。
光的等厚干涉牛顿环实验步骤光的等厚干涉牛顿环实验是一种经典的干涉实验,它通过观察光的干涉现象来研究光的波动性质。
牛顿环实验可以帮助我们理解光的干涉现象,以及光的波动性质。
下面将介绍光的等厚干涉牛顿环实验的步骤。
实验所需材料和仪器:1. 一台光源:例如白炽灯或激光器。
2. 一片透明平凸透镜:用于产生光的等厚干涉。
3. 一块玻璃基片:用于放置在透镜上方以形成干涉环。
4. 一台显微镜:用于观察干涉环的形态。
实验步骤:1. 将透明平凸透镜放置在光源上方,并调整透镜的位置,使光线通过透镜后尽可能平行。
2. 在透镜上方放置一块玻璃基片,使其与透镜接触。
3. 通过显微镜观察玻璃基片上的干涉环。
可以通过调整显微镜的焦距来清晰地观察到干涉环的形态。
4. 观察干涉环的特点:干涉环是一系列同心圆环,其中心为透镜的中心。
从中心向外,干涉环的半径逐渐增大,环的亮暗交替出现。
亮环表示光程差为整数倍波长,暗环表示光程差为半整数倍波长。
5. 测量干涉环的半径:通过显微镜的刻度盘或目镜读数器,可以测量干涉环的半径,并记录下来。
6. 对比不同波长下的干涉环:可以使用不同波长的光源,例如白炽灯和激光器,在同样的实验条件下观察干涉环的变化。
可以发现不同波长的光源产生的干涉环半径不同,这是由于光的波长不同导致的。
通过光的等厚干涉牛顿环实验,我们可以得到光的波长和透镜的曲率半径之间的关系。
根据干涉环的半径公式,可以计算出光的波长。
此外,还可以通过实验观察到干涉环的亮暗交替现象,验证光的波动性质。
光的等厚干涉牛顿环实验是光学实验中的经典实验之一,通过实验可以直观地观察到光的干涉现象,并且可以用来测量光的波长。
在实验过程中,需要仔细调整透镜和显微镜的位置,以确保干涉环的清晰观察。
此外,还可以使用不同波长的光源,观察干涉环的变化,进一步验证光的波动性质。
光的等厚干涉牛顿环实验是一种简单而有趣的实验,它可以帮助我们深入理解光的波动性质和干涉现象。
牛顿环等厚干涉实验原理引言:牛顿环等厚干涉实验是一种经典的光学实验,它通过光的干涉现象来研究光的性质。
本文将介绍牛顿环等厚干涉实验的原理及其应用。
一、牛顿环等厚干涉实验原理牛顿环等厚干涉实验是基于光的干涉现象而展开的。
当平行光垂直照射到一块透明薄片表面时,由于薄片上存在着厚度不均匀的厚度差,光线在通过薄片时会发生相位差,进而引起干涉现象。
1. 薄片的厚度不均匀在牛顿环等厚干涉实验中,通常使用一块玻璃片作为薄片。
由于制作工艺的限制,玻璃片的厚度并不均匀,因此在光照射下会形成一系列的等厚环。
这些等厚环是由薄片表面与光源之间的相位差引起的。
2. 光的干涉现象当平行光照射到薄片表面时,光线会部分透射进入薄片内部,而部分光线会被反射。
透射光和反射光在薄片内部发生干涉,形成干涉条纹。
这些干涉条纹呈现出明暗相间的环状结构,就是牛顿环。
3. 相位差的计算在牛顿环等厚干涉实验中,相位差的计算是关键。
考虑到薄片表面与光源之间的相位差,可以通过以下公式进行计算:Δφ =2πΔd/λ其中,Δφ表示相位差,Δd表示光线通过薄片时所经过的厚度差,λ表示光的波长。
二、牛顿环等厚干涉实验的应用牛顿环等厚干涉实验在光学研究中有着广泛的应用。
1. 薄膜厚度的测量牛顿环等厚干涉实验可以用来测量薄膜的厚度。
通过测量相邻环的半径差,可以推导出薄膜的厚度。
这种测量方法具有高精度和非接触性的特点,在材料科学和工程领域中得到了广泛的应用。
2. 光学元件的质量检测牛顿环等厚干涉实验可以用来检测光学元件的质量。
通过观察干涉条纹的清晰度和形状,可以判断光学元件的表面质量和制造工艺,以及是否存在缺陷和畸变。
3. 光学材料的研究牛顿环等厚干涉实验可以用来研究光学材料的性质。
通过观察干涉条纹的变化,可以推断材料的折射率和透明度,进而了解材料的光学特性和结构。
结论:牛顿环等厚干涉实验是一种重要的光学实验,通过观察干涉条纹的变化可以研究光的性质。
它在薄膜厚度测量、光学元件检测和光学材料研究等领域具有广泛的应用前景。
牛顿环实验的重要性在光学领域中的应用牛顿环实验是一种经典的光学实验,它揭示了光的干涉现象,并广泛应用于光学规律的研究与实践之中。
本文将探讨牛顿环实验的重要性以及在光学领域中的应用。
一、牛顿环实验的原理和步骤牛顿环实验基于光的干涉理论,通过在凸凹透镜或者透明薄片上投射光线,形成一系列环状的干涉条纹。
其主要原理是光的反射和折射所产生的相位差导致光的干涉现象。
进行牛顿环实验的步骤如下:1. 准备一个透明的凸透镜或透明薄片,并将其置于一光源的照射下。
2. 在凸透镜或透明薄片上形成干涉条纹,可以通过调整光源的位置或者改变透镜的厚度来实现。
3. 观察和记录不同的干涉条纹模式。
二、牛顿环实验的重要性1. 验证光的波动性理论牛顿环实验证实了光的干涉现象,进一步验证和支持了光的波动性理论。
通过实验证明,光可以被视为具有波动性质的电磁波,而不仅仅是粒子性质。
2. 研究光的折射和反射规律牛顿环实验不仅揭示了光的干涉现象,还为研究光的折射和反射规律提供了一个有效的工具。
通过观察不同干涉条纹的形成,可以得出有关光在介质中传播或与界面相互作用的规律性结果。
3. 测量透明薄片的薄度牛顿环实验可以应用于测量材料的薄度。
由于干涉环直径与透明薄片的厚度成正比,通过测量干涉环的直径,可以计算出透明薄片的薄度,这在实际应用中具有一定的重要性。
4. 光学元件的加工和检测牛顿环实验对光学元件的加工和检测具有重要意义。
通过观察干涉环的形态和特征,可以评估光学元件的质量和性能,并对其进行进一步的研究和改进。
三、牛顿环实验在光学领域中的应用1. 材料折射率的测量利用牛顿环实验可以测量透明材料的折射率。
通过测量干涉环的半径和凸透镜的半径,可以计算出材料的折射率,这对于光学材料的研究和应用具有重要意义。
2. 表面质量评估和检测牛顿环实验可以用于光学元件表面的质量评估和检测。
通过观察和分析牛顿环的形状和清晰度,可以评估光学元件表面的光滑度和精度,从而对其进行优化和改进。