2.6 几何组成分析及示例
- 格式:ppt
- 大小:478.00 KB
- 文档页数:18
立体几何中组合问题的几种解法解决几何组合问题时,应准确灵活使用加法原理和乘法原理,要分类分步进行,做到不重复不遗漏。
1 直接求解法例1:四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法有多少种?分析:正面考虑本题各步骤的方法比较复杂,计算困难,应运用逆向思维,即先考虑从10个点任意取出4个点的方法,再减去从10个点中取出4点共面的的方法即可。
解:从10个点中找出4个点的方法有C410=210种,其中在四面体的四个面内各有6个点,取出共面的4个点的方法有4C4■=60种;相邻面各棱的中点4点共C410面的有3种;一条棱上三点与其相对棱中点也共面,共6种。
∴所求方法N=210-60-3-6=141(种)本题应注意“哪些点共面?”共有几种情况?[1]例2:从平面Ⅱ上取6个点,再从平面B上取4个点,这10个点最多可确定多少个三棱锥?解法①:分三种情况考虑:第一种情况从平面a上的6个点中任取一个再与从平面β上的4个点中任取3个点构成的三棱锥有C1■C■■个;第二种情况,从平面a上的6个点中任取2个与平面13上的4个点中任取2个点构成的三棱锥有C2■C2■个;第三种情况,从平面a上的6个点中任取3个点与平面β上的4个点中任取1个点构成的三棱锥有C■■C1■个。
根据加法原理共有C1■C■■+C2■C2■ +C■■C1■ =24+90+80=194(个)。
解法②:逆向思维:从10个点中任取4个点的组合数C410中,去掉4个点共面的两种情况即4点在平面a上的C4■个,4点在平面β上的C4■个。
其余的任4点都能构成一个三棱锥。
因此,可构成三棱锥C410-C4■-C4■=210-15-1=194(个)。
2 从几何概念上求解[2]例3:空间10个点,无三点共线,其中有六个点共面,其余无四个点共面,则这些可以组成四棱锥的个数有多少个?此题易错解,仿上例。
错解一:从共面的6个点中任取1个、2个、3个、4个点,与从另外4个不共面的点中任取4个、3个、2个、1个点可构成的四棱锥有C1■C4■+C2■C■■+C■■C2■=6+60=120+60=246(个)。