华东师范大学07-08学年离散数学试卷B答案
- 格式:pdf
- 大小:100.72 KB
- 文档页数:3
离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。
答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。
答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。
答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。
自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。
2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。
答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。
判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。
四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。
答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。
2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。
找出所有强连通分量。
答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。
《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。
命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。
离散数学考试试题(A、B卷及答案)离散数学考试试题(A卷及答案)一、证明题(10分)1) (P∧Q∧A→C)∧(A→P∨Q∨C)⇔ (A∧(P↔Q))→C。
P<->Q=(p->Q)合取(Q->p)证明: (P∧Q∧A→C)∧(A→P∨Q∨C)⇔(⌝P∨⌝Q∨⌝A∨C)∧(⌝A∨P∨Q∨C)⇔((⌝P∨⌝Q∨⌝A)∧(⌝A∨P ∨Q))∨C反用分配律⇔⌝((P∧Q∧A)∨(A∧⌝P∧⌝Q))∨C⇔⌝(A∧((P∧Q)∨(⌝P∧⌝Q)))∨C再反用分配律⇔⌝( A∧(P↔Q))∨C⇔(A∧(P↔Q))→C⇔(⌝P∨Q∨R)∧(((⌝P∨Q)∧(⌝P∨R))∨(⌝Q∧⌝R))分配律⇔(⌝P∨Q∨R)∧(⌝P∨Q∨⌝Q)∧(⌝P∨Q∨⌝R)∧(⌝P∨R∨⌝Q)∧(⌝P∨R ∨⌝R)⇔(⌝P∨Q∨R)∧(⌝P∨Q∨⌝R)∧(⌝P∨⌝Q∨R)⇔4M∧5M∧6M使(非P析取Q析取R)为0所赋真值,即100,二进制为4⇔0m∨1m∨2m∨3m∨7m所以,公式(P→(Q∨R))∧(⌝P∨(Q↔R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。
真值表法:P Q R Q↔R P→(Q∨R)⌝P∨(Q↔R) (P→(Q∨R))∧(⌝P∨(Q↔R))0 0 0 0 0 1 0 1 0 0 1 1 111111111111111 0 0 1 0 1 1 1 0 1 1 1 11111111由真值表可知,公式(P→(Q∨R))∧(⌝P ∨(Q↔R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。
三、推理证明题(10分)1)⌝P∨Q,⌝Q∨R,R→S P→S。
证明:(1)P附加前提(2)⌝P∨Q P(3)Q T(1)(2),I(析取三段论)(4)⌝Q∨R P(5)R T(3)(4),I(析取三段论)(6)R→S P(7)S T(5)(6),I(假言推理)(8)P→S CP2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x))(11)Q(y)∧∃x(P(x)∧R(x))五、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) (10分)证明:因为x∈(A∪B)-C⇔x∈(A∪B)-C⇔x∈(A∪B)∧x∉C⇔(x∈A∨x∈B)∧x∉C⇔(x∈A∧x∉C)∨(x∈B ∧x∉C)⇔x∈(A-C)∨x∈(B-C)⇔x∈(A-C)∪(B-C) 所以,(A∪B)-C=(A-C)∪(B-C)。
离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的运算?A. 并集B. 交集C. 差集D. 乘法2. 命题逻辑中,下列哪个命题是真命题?A. (P ∧ ¬P) → QB. (P ∨ Q) ∧ ¬(P ∧ Q)C. P → (Q → P)D. (P → Q) ∧ (Q → R) → (P → R)3. 函数f: A → B,如果f是单射,那么下列哪个选项是正确的?A. A中不同的元素在B中可能有相同的像B. B中每个元素都有原像C. A中不同的元素在B中有不同的像D. B中不同的元素在A中有不同的原像4. 在图论中,下列哪个选项不是图的基本术语?A. 顶点B. 边C. 邻接D. 矩阵5. 组合数学中,从n个不同元素中取出k个元素的组合数记作C(n, k),下列哪个选项是错误的?A. C(n, k) = C(n, n-k)B. C(n, 0) = 1C. C(n, 1) = nD. C(n, k) = C(k, n)6. 关系R是A×B上的二元关系,下列哪个选项不是关系R的性质?A. 自反性B. 对称性C. 传递性D. 可数性7. 在命题逻辑中,下列哪个命题等价于P ∨ (Q ∧ R)?A. (P ∨ Q) ∧ (P ∨ R)B. (P ∧ Q) ∨ (P ∧ R)C. (P ∨ Q) ∨ RD. (P ∨ Q) ∧ R8. 集合{1, 2, 3}的幂集含有多少个元素?A. 3B. 6C. 8D. 99. 在图论中,下列哪个选项不是树的性质?A. 无环B. 至少有两个顶点C. 任意两个顶点都由唯一路径连接D. 至少有一个环10. 在集合论中,下列哪个选项是正确的?A. 空集是任何集合的子集B. 任何集合都是其自身的超集C. 空集是任何非空集合的真子集D. 空集是其自身的并集二、简答题(每题10分,共30分)11. 简述命题逻辑中的德摩根定律,并给出一个例子。
2007-2008学年第2学期期末考试试卷(B卷)参考答案及评分标准一、填空题(4小题,每空2分,共20分)1、2n2、T3、225,220,52,55,5!4、ℵ,ℵ0二、判断题(4小题,每小题2分,共8分。
正确的划√,错误的划×。
)1、√2、×3、√4、√三、计算或简答题(5小题,共36分)1、在命题逻辑中把下列命题符号化(3小题,每题3分,共9分)(1)设P:别人有困难,Q:老王帮助别人,R:困难解决了。
符号化为(P∧⌝R)→Q或⌝R→(P→Q)(2)设P:我今天上街,Q:我有时间。
符号化为Q→P(3)设P:n是整数,Q:n是偶数,R:n能被2整除。
符号化为(P∧Q)⇄R2、在谓词逻辑中把下列命题符号化(3小题,每题3分,共9分)(1)设P(x):x是无理数,Q(x):x能表示成分数。
符号化为⌝∃x (P(x)∧Q(x)) 或∀x(P(x)→⌝Q(x))(2)设P(x,y):x=y,Q(x):x是实数,符号化为∀x(Q(x)∧⌝P(x,0)→∃y(Q(y)∧P(xy,1)))或者∀x∃y (Q(x)∧⌝P(x,0)→(Q(y)∧P(xy,1)))(3)设P(x):x是人,Q(x):x努力,R(x):x成功。
符号化为∀x(P(x)∧R(x)→Q(x))3、用等价演算法求下面公式的主析取范式.主合取范式:P→(Q→R)⇔⌝P∨(⌝Q∨R) ⇔⌝P∨⌝Q∨R...............[斟酌给0~2分]公式的所有极小项有⌝P∧⌝Q∧⌝R,⌝P∧⌝Q∧R,⌝P∧Q∧⌝R,⌝P∧Q∧R,P∧⌝Q∧⌝R,P∧⌝Q∧R,P∧Q∧⌝R,故主析取范式为...........................[斟酌给0~2分] (⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(⌝P∧Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧⌝R)........................................................[斟酌给0~1分] 4、求下面公式的前束范式(5分)∀x(∃yF(x,y)→⌝∀y(G(x,y)∧∃zH(x,y,z)))⇔∀x(∃yF(x,y)→∃y(⌝G(x,y)∨∀z⌝H(x,y,z)))........................[斟酌给0~1分]⇔∀x(∃uF(x,u)→∃y(⌝G(x,y)∨∀z⌝H(x,y,z))) ........................[斟酌给0~2分]⇔∀x∀u∃y∀z (F(x,u)→(⌝G(x,y)∨⌝H(x,y,z))) .....................[斟酌给0~2分] 5、解:不满足自反性、反自反性、反对称性和传递性。
离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。
答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。
若命题P和Q等价,则记作P⇔Q。
蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。
若命题P蕴含Q,则记作P→Q。
2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。
答案:设x属于A∩B,即x同时属于A和B。
根据并集的定义,若元素属于A或B,则它属于A∪B。
因此,x属于A∪B。
由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。
3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。
在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。
4. 描述有限自动机的组成部分及其功能。
答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。
输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。
5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。
在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。
确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。
重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。
答案:如果x不能被2整除,则x不是偶数。
2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。
答案:6个顶点。
3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。
答案:2^4=16个元素。
4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。
答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。
5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。
答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。