27结构方程模型(SEM)PPT课件
- 格式:ppt
- 大小:227.00 KB
- 文档页数:30
结构方程模型讲义结构方程模型(Structural Equation Modeling,SEM)是一种统计分析方法,多用于研究基于潜变量的复杂系统内在结构的定量关系。
其理论基础源于多元统计分析、因子分析和路径分析,通过建立观察变量与潜变量之间的关系模型,解析出潜变量对观察变量的影响,进而研究变量之间的内在结构关系。
一、SEM的基本概念和特点1.潜变量:潜变量是指无法直接观察或测量的变量,只能通过观察变量来间接反映。
它可以代表一些理论上的构念、心理特质或潜在特征。
2.观察变量:观察变量是可以直接观察和测量的变量,表现为定量或定性的实际测量结果。
3.模型设定:SEM基于研究者对潜变量和观察变量之间关系的理论假设,通过建立潜变量和观察变量之间的关系模型,定量研究变量之间的影响关系。
4.结构关系:SEM通过路径系数来描述潜变量和观察变量之间的关系,并使用结构方程模型来表示这些关系。
路径系数表示了变量之间的直接或间接影响。
二、结构方程模型的步骤1.模型设定:根据研究目的和理论依据,建立潜变量和观察变量之间的关系模型,并确定模型中的指标、因子和路径。
2.数据收集:收集样本数据,并根据所设定的模型变量进行测量,获得观察变量的观测值。
3.模型估计:利用SEM软件,通过最大似然估计等方法求解模型中的参数估计值,包括路径系数、因子载荷和误差项。
4.模型拟合:通过拟合度指标对模型的拟合程度进行评估,检验模型是否与观测数据一致。
如果拟合不理想,可能需要修改或调整模型。
5.结果解释和修正:对模型结果进行解释,解释模型中的路径系数和因子载荷,以及观察变量的解释力。
如果有必要,根据拟合结果调整模型,并进行相应修正。
6.结果验证:通过交叉验证、重测等方法验证模型的鲁棒性和稳定性,确保模型结果的可靠性和稳定性。
结构方程模型的应用领域非常广泛,包括心理学、社会学、教育学、市场营销、财务管理等。
它可以用于研究因果关系、探究复杂系统内在结构、验证理论模型等。
结构方程模型(SEM)结构方程这几年热度不减,有必要研究一下它的R语言实现过程,今天先复习一下结构方程的相关理论,参考吉林大学余翠林的ppt一、为什么使用SEM?1、回归分析有几方面的限制:(1)不允许有多个因变量或输出变量(2)中间变量不能包含在与预测因子一样的单一模型中(3)预测因子假设为没有测量误差(4)预测因子间的多重共线性会妨碍结果解释(5)结构方程模型不受这些方面的限制2、SEM的优点:(1)SEM程序同时提供总体模型检验和独立参数估计检验;(2)回归系数,均值和方差同时被比较,即使多个组间交叉;(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
3、结构方程模型最为显著的两个特点是:(1)评价多维的和相互关联的关系;(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
同时具有联系信息技术吸纳能力:SEM能够反映模型中要素之间的相互影响;吸纳能力概念作为一个重要的模型要素,难以直接度量,结构方程模型技术能够更为充分地体现其蕴含的要素信息和影响作用。
二、SEM的基本思想与方法SEM是基于变量的协方差矩阵来分析变量之间关系的一种统计方法,实际上是一般线性模型的拓展,包括因子模型与结构模型,体现了传统路径分析与因子分析的完美结合。
SEM一般使用最大似然法估计模型(Maxi-Likeliheod,ML) 分析结构方程的路径系数等估计值,因为ML法使得研究者能够基于数据分析的结果对模型进行修正。
1、 SEM术语(1)观测变量可直接测量的变量,通常是指标(2)潜变量潜变量亦称隐变量,是无法直接观测并测量的变量。
潜变量需要通过设计若干指标间接加以测量。
(3)外生变量是指那些在模型或系统中,只起解释变量作用的变量。