原子光谱实验及数据处理
- 格式:ppt
- 大小:1.26 MB
- 文档页数:14
原子吸收光谱法实验报告实验报告:原子吸收光谱法一、实验目的1.了解原子吸收光谱法的原理和仪器设备。
2.掌握使用原子吸收光谱法进行测定的方法和步骤。
3.学习如何分析、处理实验数据,得出准确的样品含量。
二、实验原理原子吸收光谱法是一种常用的分析方法,其基本原理是:当原子或离子吸收具有特定波长的光时,会产生吸收线,其强度与物质浓度成正比。
在实验中,使用的是原子吸收分光光度计,它由光源、光栅、光程系统、光电转换器等组成。
三、实验步骤1.仪器准备:打开仪器电源,启动仪器,预热10分钟。
2.样品制备:根据实验要求,稀释待测样品,使其浓度适合于测定。
3.设置光谱仪参数:选择合适的光谱波长,进入光谱扫描模式,设置光谱仪参数。
4.标定曲线制备:准备一系列浓度不同的标准溶液,并分别测定其吸光度,得到吸光度与浓度之间的线性关系。
5.测定样品的吸光度:依次将各个浓度样品和待测样品放入进样池中,分别测定其吸光度。
6.作图和计算:根据标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。
根据待测样品的吸光度,计算出其浓度。
四、数据处理与结果分析根据实验操作,记录下各个浓度样品和待测样品的吸光度数据。
使用标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。
根据待测样品的吸光度,计算出其浓度。
根据实验结果,我们可以得出待测样品中所含物质的浓度。
如果待测样品的浓度超出了标定曲线的范围,可以通过稀释样品重新测定,以确保结果的准确性。
五、实验总结通过本次实验,我深入了解了原子吸收光谱法的原理和仪器设备,掌握了使用该方法进行测定的步骤和技巧。
实验中,需要注意的是样品的制备和标定曲线的制备,这两个步骤对于后续的测定至关重要。
实验中可能出现的误差主要包括仪器误差、操作误差和样品制备误差等。
在实验过程中,我们需要严格控制这些误差,以确保结果的准确性和可靠性。
同时,我们也要注意实验数据的处理与分析,避免统计和计算上的错误。
一、实验目的1. 学习原子吸收光谱分析法的基本原理,掌握其分析方法。
2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法。
3. 掌握以标准曲线法测定水样中重金属元素(如铅、镉、铜等)含量的方法。
二、实验原理原子吸收光谱法(AAS)是一种利用原子蒸气对特定波长光线的吸收特性进行元素定量分析的方法。
当具有一定能量的光照射到含有待测元素的样品时,如果样品中的待测元素处于激发态,则部分能量会被吸收,从而产生特征光谱。
通过测量特征光谱的吸光度,可以确定样品中待测元素的含量。
火焰原子吸收光谱法是AAS的一种,其原理是利用火焰的热能将样品中的待测元素转化为基态原子。
常用的火焰为空气-乙炔火焰,其绝对分析灵敏度可达10^-9g。
根据实验需要,可选择不同的火焰类型和燃烧器。
三、实验仪器与试剂1. 仪器:火焰原子吸收分光光度计、移液器、锥形瓶、烧杯、玻璃棒、容量瓶、滤纸等。
2. 试剂:标准溶液(铅、镉、铜等)、硝酸、盐酸、氢氧化钠、去离子水等。
四、实验步骤1. 标准溶液配制:根据实验要求,配制一定浓度的标准溶液,用于绘制标准曲线。
2. 样品处理:取一定量的水样,加入适量的硝酸和盐酸,煮沸至近干,加入适量的去离子水,搅拌溶解,定容至一定体积。
3. 标准曲线绘制:将标准溶液按照一定比例稀释,分别测定吸光度,以浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
4. 样品测定:将处理好的样品按照与标准曲线绘制相同的步骤进行测定,得到吸光度值。
5. 结果计算:根据标准曲线,查得样品中待测元素的含量,并进行计算。
五、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制铅、镉、铜的标准曲线,如图1、图2、图3所示。
图1 铅的标准曲线图2 镉的标准曲线图3 铜的标准曲线2. 样品测定:根据标准曲线,测定样品中铅、镉、铜的含量,结果如下:铅含量:0.5mg/L镉含量:0.2mg/L铜含量:0.3mg/L3. 结果分析:实验结果表明,火焰原子吸收光谱法可以有效地测定水样中铅、镉、铜等重金属元素的含量,具有较高的准确度和灵敏度。
原子吸收光谱仪的操作步骤
原子吸收光谱仪的操作步骤可以分为以下几个部分:样品处理、仪器准备、光谱测量和数据处理。
首先,进行样品处理。
将待测样品按照实验需求进行取样,并进行适当的前处理,如溶解、稀释或降解。
确保样品中所含的元素处于适合测量的形态。
接下来,进行仪器准备。
打开光谱仪电源,等待其预热至稳定状态。
根据样品的特性,选择合适的光路和探测器设置。
校准仪器并检查各个部件是否工作正常。
然后,进行光谱测量。
将样品注入光谱仪的样品池中,并确定合适的测量条件。
包括选择元素的谱线、设置光源的波长和强度、以及调整进样量等。
确保所选择的谱线具有适宜的灵敏度和线性范围。
在进行测量时,确保样品稳定并避免干扰。
可以通过空白试剂和参比物进行校正,以消除背景信号和仪器漂移带来的影响。
同时,控制光源和检测器的参数以
保证光谱信号的质量。
最后,进行数据处理。
将所测得的光谱信号转化为相应的浓度或吸收值,并根据已知标准曲线或其他校正方法进行定量分析。
可以利用计算机软件进行数据处理和展示,以得到准确的分析结果。
需要注意,操作过程中应严格遵守安全操作规程,确保实验环境和个人安全。
此外,操作步骤和参数设置可能因不同的仪器型号和实验要求而有所差异,建议在具体实验前查阅仪器说明书和相关文献,以确保实验结果的准确性和可重复性。
原子发射光谱分析实验一、【实验题目】原子发射光谱分析实验二、【目的要求】要求同学掌握原子发射光谱分析中所用仪器设备基本结构及其原理;了解发射光谱法定性及定量分析的步骤;要求同学利用看谱法分析铬、钨、锰钢中的铬、钨、锰的含量,给出它们的含量范围;掌握铁光谱比较法定性判别未知试样中所含的元素;了解特种钢中可能存在的其它元素。
三、【基本原理】原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。
不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。
每个电子处在一定的能级上,具有一定的能量。
在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。
但当原子受到外界能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。
处于激发态的原子是十分不稳定的,在极短的时间内(约10-8s)便跃迁至基态或其它较低的能级上。
当原子从较高能级跃迁到基态或其它较低的能级的过程中,将释放出多余的能量,这种能量是以一定波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:原子的各个能级是不连续的(量子化)。
电子的跃迁也是不连续的,所以原子光谱是线状光谱。
光谱分析就是从识别这些元素的特征光谱来鉴别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。
这就是发射光谱分析的基本依据。
试样在外界能量的作用下转变成气态原子,并使气态原子的外层电子激发至高能态。
当从较高的能级跃迁到较低的能级时,原子将释放出多余的能量而发射出特征谱线。
对所产生的辐射经过摄谱仪器进行色散分光,按波长顺序记录在感光板上,就可呈现出有规则的谱线条,即光谱图。
然后根据所得光谱图进行定性鉴定或定量分析。
四、【仪器与试剂】1. 仪器:WP-1型平面光栅摄谱仪;8W型光谱投影仪;台式看谱镜;天津产红快开型光谱感光板;元素发射光谱图及元素波长线表。
原子吸收光谱实验报告一、实验目的1. 学习原子吸收光谱分析法的基本原理;2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法;3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。
二、实验原理1. 原子吸收光谱分析基本原理原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。
火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。
常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。
2. 标准曲线法基本原理在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer 定律:I=I0×(10-abc)(式中a为被测组分对某一波长光的吸收系数,b为光经过的火焰的长度)。
根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。
三、仪器与试剂1. 仪器、设备:TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。
2. 试剂碳酸镁、无水碳酸钙、1mol L-1盐酸溶液、蒸馏水3. 标准溶液配制(1)钙标准贮备液(1000g mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.6250g 于100mL烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1mol L-1盐酸溶液,至完全溶解,将溶液于250mL容量瓶中定容,摇匀备用。
原子光谱的谱线分析方法与数据处理引言:原子光谱是研究原子结构和性质的重要手段之一。
通过观察原子在特定能级之间的跃迁所产生的光谱线,可以得到有关原子的信息。
谱线分析方法和数据处理是原子光谱研究的关键环节,本文将介绍一些常用的谱线分析方法和数据处理技术。
一、原子光谱的谱线分析方法1. 光谱仪的选择光谱仪是进行原子光谱分析的重要设备,常用的光谱仪包括光栅光谱仪、干涉仪和衍射仪等。
不同的光谱仪具有不同的分辨率和灵敏度,选择合适的光谱仪对于准确分析原子光谱非常重要。
2. 谱线的识别原子光谱中的谱线非常丰富,谱线的识别是谱线分析的第一步。
常用的谱线识别方法包括比对实验谱线与已知谱线数据库、利用谱线的波长和强度特征进行识别等。
3. 谱线的测量谱线的测量是谱线分析的核心步骤。
常用的谱线测量方法包括单线法、多线法和连续波法等。
单线法测量一条谱线的强度,多线法测量多条谱线的强度并进行比较,连续波法则通过连续光源对比谱线进行测量。
二、原子光谱数据的处理1. 数据的收集与整理实验过程中得到的原子光谱数据需要进行收集和整理。
首先,将实验得到的光谱数据记录下来,包括波长、强度等信息。
然后,对数据进行整理,去除异常值和噪声,以保证后续数据处理的准确性。
2. 数据的校正与标定原子光谱数据的校正与标定是数据处理的重要环节。
校正包括背景校正、仪器响应校正等,以消除仪器和环境因素对光谱数据的影响。
标定则是将光谱数据与已知标准进行对比,确定光谱数据的准确性和可靠性。
3. 数据的分析与解释通过对原子光谱数据的分析与解释,可以得到有关原子性质和结构的信息。
常用的数据分析方法包括谱线强度分析、谱线形状分析和谱线位置分析等。
通过对谱线的强度、形状和位置等特征进行分析,可以揭示原子的能级结构和跃迁规律。
4. 数据的模拟与拟合对于复杂的原子光谱数据,常常需要进行模拟和拟合。
通过建立适当的模型和拟合曲线,可以更好地理解和解释实验数据。
常用的数据模拟和拟合方法包括线性回归、非线性拟合和最小二乘法等。
操作1
上图为定标前的谱线,纵坐标表示光强,横坐标表示通道的编号。
上图为定标后的谱线,横坐标变为了波长。
因为光栅移动等操作的会产生机械误差,若不进行定标,误差会很大,以至于掩盖掉真实的实验数据。
首次使用需要定标,移动光栅后也需要重新定标。
钠双黄线的Δλ=0.55nm
钠双黄线的Δλ=0.63nm
钠双黄线的Δλ=0.6nm
三种情况得到的钠双黄线的Δλ相近。
操作2
浓度越大,对白光的吸收越明显。
并且波长大于600nm的光几乎没有被吸收。
上图为不同浓度的高锰酸钾溶液和水对白光的吸收度曲线。
对于不同浓度的溶液,吸收峰的波长都相同。
吸收峰波长为525.45nm。
从吸光度同样可以看出,波长大于600nm的光几乎没有被吸收。
研究吸收度和浓度的关系。
取三个波长525nm、500.03nm、540.01nm,分别作出吸收度-浓度曲线,做直线拟合。
三条拟合曲线的R²分别为0.99637、0.99622、0.99831,斜率分别为13.80606、9.20661、12.91962。
从而验证了比尔定律。
由三条拟合直线的斜率看出,
波长接近吸收峰波长时,吸光度随浓度变化得更快。
原子吸收光谱实验报告篇一:原子吸收光谱实验报告原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:XX012127 一、实验目的:1.了解石墨炉原子吸收分光光度计的使用方法。
2.了解石墨炉原子吸收分光光度计进样方法及技术关键。
3. 学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。
二、实验原理:在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。
相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。
石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。
石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至XX ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。
样品用量也少,仅5 ~ 100 uL。
还能直接分析固体样品。
该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。
本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。
三、仪器和试剂:1.仪器由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。
镉元素空心阴极灯容量瓶 50 mL(5只)微量分液器 0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液四、实验步骤:1.测定条件分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。
原子发射光谱实验报告篇一:电感耦合等离子体发射光谱实验报告电感耦合等离子体发射光谱法1.基本原理1.1概述原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。
到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。
1.2方法原理原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。
原子发射光谱法的量子力学基本原理如下:(1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ(3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;(4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。
半定量是对样品中一些元素的浓度进行大致估算。
一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。
然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。
结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。