人教版高中数学必修5教材解析演示
- 格式:pptx
- 大小:838.91 KB
- 文档页数:51
高中数学人教版必修5——第十三讲均值不等式(解析版)第十三讲均值不等式(解析版)在高中数学的学习中,均值不等式是一条非常重要的数学定理。
它能够帮助我们找到一组数的平均值与其他特定的数值之间的关系。
本文将详细解析高中数学人教版必修5中的第十三讲——均值不等式。
一、均值不等式的定义和性质均值不等式实际上是按平均值来衡量一组数与其他数值之间的大小关系。
它包含了算术平均值、几何平均值和平方平均值等不同的形式。
算术平均值是最为熟悉的一种形式,它表示一组数相加后除以元素个数得到的结果。
几何平均值是将一组数相乘后开根号得到的结果。
平方平均值是将一组数的平方相加后除以元素个数再开根号得到的结果。
在不等式的关系中,对于正实数来说,有以下几个性质:1. 当所有元素相等时,算术平均值、几何平均值和平方平均值相等。
2. 当所有元素不相等时,算术平均值大于几何平均值,而几何平均值大于平方平均值。
3. 对于正实数来说,算术平均值大于几何平均值,并且它们都大于平方平均值。
二、均值不等式的应用均值不等式在数学问题的解决中具有广泛的应用。
它可以帮助我们证明和推导其他重要的数学关系。
1. 证明与推导在证明和推导方面,均值不等式可以帮助我们解决一些复杂的不等式问题。
通过运用不同形式的均值不等式,我们可以逐步地推导出更为严格的不等式关系。
例如,在求证某个不等式问题时,我们可以使用算术平均值与几何平均值之间的关系来逐步推导出正确的结论。
2. 理解与比较均值不等式还能够帮助我们理解和比较数列的大小关系。
通过对数列的算术平均值、几何平均值和平方平均值的比较,我们可以得出一些关于数列性质的结论。
例如,当一组数的算术平均值大于几何平均值时,就能够说明这组数存在着某种程度的波动和不均匀性。
三、均值不等式的例题解析下面,我们将通过一些例题来具体解析均值不等式的应用。
例题1:已知a、b、c为正实数,证明(a+b)(a+c)(b+c)≥8abc。
解析:我们可以通过均值不等式来证明这个不等式关系。
高中数学解三角形课件一、教学内容本节课的教学内容选自人教版高中数学必修五,第三章第11节的“解三角形”。
具体内容包括:三角形的概念、三角形的分类、三角形的内角和定理、正弦定理、余弦定理等。
二、教学目标1. 理解三角形的概念和分类,掌握三角形的内角和定理。
2. 掌握正弦定理和余弦定理,能够运用这两个定理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:三角形的内角和定理、正弦定理和余弦定理的理解和运用。
难点:正弦定理和余弦定理在实际问题中的应用。
四、教具与学具准备教具:黑板、粉笔、三角板、多媒体课件。
学具:笔记本、尺子、圆规、三角板。
五、教学过程1. 情景引入:通过一个生活中的实际问题,引入三角形的概念和分类。
2. 讲解三角形的内角和定理:用三角板演示,让学生直观地理解三角形的内角和定理。
3. 讲解正弦定理:通过PPT展示正弦定理的推导过程,让学生理解正弦定理的含义。
4. 讲解余弦定理:同样通过PPT展示余弦定理的推导过程,让学生理解余弦定理的含义。
5. 例题讲解:挑选一些典型的例题,让学生运用正弦定理和余弦定理解决问题。
6. 随堂练习:让学生独立完成一些练习题,巩固所学知识。
六、板书设计板书内容:三角形的内角和定理、正弦定理、余弦定理。
七、作业设计1. 作业题目:(1)运用正弦定理和余弦定理,解决一些三角形的计算问题。
(2)分析一道实际问题,运用正弦定理和余弦定理进行解答。
2. 答案:(1)正弦定理和余弦定理的计算问题,答案见教材。
(2)实际问题的解答,答案见PPT。
八、课后反思及拓展延伸1. 课后反思:本节课的教学效果如何,学生是否掌握了三角形的内角和定理、正弦定理和余弦定理,哪些学生掌握了,哪些学生还存在问题,针对存在的问题,如何进行改进。
2. 拓展延伸:可以让学生进一步研究正弦定理和余弦定理在其他领域的应用,如物理、工程等。
也可以让学生尝试解决更复杂的三角形问题,提高他们的解题能力。
等比数列的前n 项和公式教学重点: 掌握等比数列前n 项和通项公式及性质,理解等比数列前n 项和公式与函数的关系教学难点: 等比数列前n 项和通项公式的性质的应用1. 等比数列前n 项和通项公式设等比数列{}n a 的前n 项和为n S ,则12...n n S a a a =+++ (1) 当1q =时,1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==--2. 等比数列前n 项和公式的性质(1) 等比数列中,连续m 项的和(如232,,,...m m m m m S S S S S --)仍组成等比数列(注意:公比1q ≠-)(2){}n a 是公比不为1的等比数列()0n n S Aq B A B ⇔=++=(3) mn m m n S S q S +=+(q 为公比)(4) 若等比数列的项数为()2k k N +∈,则S S偶/奇q = ;若等比数列的项数为()21k k N ++∈ ,则S aS- 奇/偶q =3. 等比数列前n 项和公式与函数的关系(1) 当 1q =时,1n S na =是关于n 的正比例函数(常数项为0的一次函数);当1q ≠时,()0n n S Aq A A =-+≠是n 的一个指数式与一个常数的和,其中指数式的系数和常数项互为相反数,且11a A q=- (2) 当1q =时,数列123,,,...,,...n S S S S 的图像是正比例函数1y a x =的图像上的一群孤立的点;当1q ≠时,数列123,,,...,,...n S S S S 的图像是函数()0x y Aq A A =-+≠的图像上的一群孤立的点。
(3) 若n S 表示数列{}n a 的前n 项和,且()0,1n n S Aq A Aq q =-≠≠则数列{}n a 是等比数列。
类型一:等比数列前n 项和通项公式例1. 在等比数列{}n a 中,若189,2,96,n n S q a ===求1,a n 解析:由()1111,1n n n n a q S a a q q--==⋅-以及已知条件得()()111121891121111962962192,189211923232,63n n a n n n a a a a a n --=--=⎧⎪∴⋅=∴=-=-∴===∴=⎨⎪⎩答案:13,6an ==练习1. 在等比数列{}n a 中,若1346510,4a a a a +=+=,求4a 和5S 答案:45311,2a S ==练习2. 在等比数列{}n a 中,若42,1,q S ==求8S 答案:817S =例2.等比数列{}n a 中,已知333,9,a S ==求1a 和公比q解析:当1q =时,13313,39a a S a ====符合题意;当1q ≠时,由已知得()2311332191210,a a q a q S qq q ==-==-⎧⎪∴--=⎨⎪⎩ 解得12q =-或1q =(舍)1111121,3;,122a q a q a ∴=∴===-=答案:1111,3;,122q a q a ===-=练习3.已知数列{}n a 满足12430,,3n n a a a ++==-则{}n a 的前10项和等于 答案:()10313--练习 4.设公比为()0q q >的等比数列{}n a 的前n 项和为n S 若224432,32,S a S a =+=+则q 为____ 答案:32类型二: 等比数列前n 项和公式的性质例3.等比数列{}n a 的前n 项和为n S ,若102010,30S S ==则30S = ___________ 解析:{}n a 是等比数列,1020103020,,S S S S S ∴--仍成等比数列,又()210203030301010,30,30,7010S S S S -==∴-=∴=答案:70练习5. 等比数列{}n a 的前n 项和为n S ,已知368,7,S S ==则789a a a ++= () A.18 B.18- C.578 D.558答案:A练习6.已知等比数列的前n 项和13,,n n S a n N ++=+∈则实数a 的值是()A.-3B.3C.-1D. 1 答案:A类型三: 等比数列前n 项和公式与函数关系例4.若等比数列{}n a 中,前 n 项和2nn S a =+,则a =()A.-2B.2C.1D.-1解析:由题意知,{}n a 为公比不为1的等比数列,因为2nn S a =+故101a a +=∴=-故选D 答案:D练习7.设n S 为等比数列{}n a 的前n 项和,已知481,17,S S ==求n S 答案:当2q =时,()12115nn S =- 当2q =-时,()12115nn S ⎡⎤=--⎣⎦ 练习8.已知等比数列{}n a 的前n 项和为113,6n n S x -=⋅-则x 的值为_______ 答案:12例5.数列2211,12,122,...,122...2n -+++++++的前 n 项和等于()A.12n n +- B.2n C.2n n - D.122n n +--解析:不妨设该数列为{}n a ,其前n 项和为n S ,则()()()()2112121231122...221...2121...21222 (22)2n n n n n n nn a S a a a n n-+=++++=-∴=+++=-+-++-=++++-=--答案:D练习9.已知数列{}n a 满足12...21,n n a a a +++=-则22212...n a a a +++= ____________答案:413n -练习10.122133434...344nn n n n ---+⋅+⋅++⋅+= ________________答案:1143n n ++-1. 已知等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( ) A .514 B .513 C .512 D .510 答案:D2. 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案:C3. 已知等比数列的前n 项和S n =4n +a ,则a 的值等于( )A .-4B .-1C .0D .1 答案:B4.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1 答案:A5. 若S n是数列{a n}的前n项和,且S n=n2,则{a n}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,但也是等比数列D.既不是等差数列,又不是等比数列答案:B6. 设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A.6B.7 C.8 D.9答案:A7. 等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=() A.7B.8 C.15 D.16答案:C8. 设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35 C.49 D.63答案:C_______________________________________________________________________________ _________________________________________________________________________________ __基础巩固1. 在数列{a n }中,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,则a 1,a 3,a 5( )A .成等差数列B .成等比数列C .倒数成等差数列D .不确定 答案:B2. 等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A .81B .120C .168D .192 答案:B3. 已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n }的前5项和为( )A .158或5B .3116或5C .3116D .158答案:C4. 设等比数列{a n }的前n 项和为S n ,若S 3=9,S 6=27,则S 9=( ) A .81 B .72 C .63 D .54 答案:C5. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.答案:156. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =______,前n 项和S n =______. 答案:2, 2n +1-27. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为________. 答案:-128. 设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. 答案:249. 已知等差数列{a n }的公差不为0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;(2)求a 1+a 4+a 7+a 10+…+a 3n -2. 答案:(1)设公差为d ,由题意,得a 211=a 1·a 13,即(a 1+10d )2=a 1(a 1+12d ),又a 1=25,解得d =-2或d =0(舍去). ∴a n =a 1+(n -1)d =25+(-2)×(n -1)=27-2n . (2)由(1)知a 3n -2=31-6n ,∴数列a 1,a 4,a 7,a 10,…,是首项为25,公差为-6的等差数列. 令S n =a 1+a 4+a 7+…+a 3n -2 =n (25+31-6n )2=-3n 2+28n .10. 在等比数列{a n }中,已知a 6-a 4=24,a 3·a 5=64,求数列{a n }的前8项和.答案:解法一:设数列{a n }的公比为q ,根据通项公式a n =a 1q n -1,由已知条件得a 6-a 4=a 1q 3(q 2-1)=24,①a 3·a 5=(a 1q 3)2=64, ∴a 1q 3=±8.将a 1q 3=-8代入①式,得q 2=-2,没有实数q 满足此式,故舍去. 将a 1q 3=8代入①式,得q 2=4,∴q =±2. 当q =2时,得a 1=1,所以S 8=a 1(1-q 8)1-q =255;当q =-2时,得a 1=-1,所以S 8=a 1(1-q 8)1-q =85.解法二:因为{a n }是等比数列,所以依题意得 a 24=a 3·a 5=64,∴a 4=±8,a 6=24+a 4=24±8. 因为{a n }是实数列,所以a 6a 4>0,故舍去a 4=-8,而a 4=8,a 6=32,从而a 5=±a 4·a 6=±16. 公比q 的值为q =a 5a 4=±2,当q =2时,a 1=1,a 9=a 6q 3=256, ∴S 8=a 1-a 91-q=255;当q =-2时,a 1=-1,a 9=a 6q 3=-256, ∴S 8=a 1-a 91-q =85.能力提升11. 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =n90·(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7月C .7月、8月D .8月、9月 答案:C12. 已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C13. 设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B .73C .83 D .3答案:B14. 等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或12答案: C15. 已知等比数列前20项和是21,前30项和是49,则前10项和是( )A .7B .9C .63D .7或63 答案:D16. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C .323(1-4-n )D .323(1-2-n )答案:C17. 等比数列{a n }中,若前n 项的和为S n =2n -1,则a 21+a 22+…+a 2n=________. 答案:13(4n -1)18. 已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 22-S 11=________. 答案:-6519. 等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1等于( )A .65B .56 C .20 D .110答案:B20. 已知数列{a n }的首项a 1=2,且a n =4a n -1+1(n ≥2),则a 4为( ) A .148 B .149 C .150 D .151 答案:B21.已知a ,b ,c 成等比数列,a ,x ,b 成等差数列,b ,y ,c 也成等差数列,则a x +cy 的值__________. 答案:222. 将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.答案:n 2-n +6223. 设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 答案:(1)设公比为q (q >0),∵a 1=2,a 3=a 2+4, ∴a 1q 2-a 1q -4=0, 即q 2-q -2=0,解得q =2, ∴a n =2n .(2)由已知得b n =2n -1, ∴a n +b n =2n +(2n -1),∴S n =(2+22+23+…+2n )+(1+3+5+…+2n -1) =2(1-2n )1-2+[1+(2n -1)]n 2=2n +1-2+n 2.24. 在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1.证明:数列{b n }是等差数列. (2)求数列{a n }的前n 项和.答案:(1)∵a n +1=2a n +2n ,∴a n +12n =a n 2n -1+1,即b n +1=b n +1, ∴b n +1-b n =1.故数列{b n }是首项为1,公差为1的等差数列.(2)由(1)知b n =n ,∴a n =n ·2n -1.S n =1×20+2×21+3×22+…+n ·2n -1,2S n =1×21+2×22+…+(n -1)·2n -1+n ·2n ,两式相减得-S n =1+21+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)2n +1.25. 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .答案:(1)∵S 1,S 3,S 2成等差数列,2S 3=S 1+S 2,∴q =1不满足题意.∴2a 1(1-q 3)1-q =a 1+a 1(1-q 2)1-q, 解得q =-12. (2)由(1)知q =-12, 又a 1-a 3=a 1-a 1q 2=34a 1=3, ∴a 1=4.∴S n =4[1-(-12)n ]1+12=83[1-(-12)n ]. 26. 已知等比数列{a n }的前n 项和为S n ,S 3=72,S 6=632. (1)求数列{a n }的通项公式a n ;(2)令b n =6n -61+log 2a n ,求数列{b n }的前n 项和T n . 答案:(1)∵S 6≠2S 3,∴q ≠1.∴⎩⎪⎨⎪⎧ a 1(1-q 3)1-q =72a 1(1-q 6)1-q =632, 解得q =2,a 1=12. ∴a n =a 1q n -1=2n -2.(2)b n =6n -61+log 22n -2=6n -61+n -2=7n -63.b n -b n -1=7n -63-7n +7+63=7,∴数列{b n }是等差数列.又b 1=-56,∴T n =nb 1+12n (n -1)×7 =-56n +12n (n -1)×7 =72n 2-1192n . 27. 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n . 答案:设{a n }公比为q ,由S 4=1,S 8=17,知q ≠1, ∴⎩⎪⎨⎪⎧ a 1(1-q 4)1-q =1a 1(1-q 8)1-q =17,两式相除并化简,得q 4+1=17,即q 4=16.∴q =±2.∴当q =2时,a 1=115,S n =115(1-2n )1-2=115(2n -1); 当q =-2时,a 1=-15,S n =-15[1-(-2)n ]1+2=115[(-2)n -1]. 28. 已知数列{a n }的首项a 1=23,a n +1=2a n a n +1,n =1,2,…. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n .答案:(1)∵a n +1=2a na n +1,∴1a n +1=a n +12a n =12+12·1a n , ∴1a n +1-1=12⎝⎛⎭⎫1a n -1, 又a 1=23,∴1a 1-1=12, ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n 2n +n . 设T n =12+222+323+…+n 2n , ① 则12T n =122+223+…+n -12n +n 2n +1, ② ①-②得12T n =12+122+…+12n -n 2n +1 =12⎝⎛⎭⎫1-12n 1-12-n2n +1=1-12n -n2n +1, ∴T n =2-12n -1-n 2n .又1+2+3+…+n =n (n +1)2. ∴数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .。
等差数列的概念、性质考查重点:等差数列的通项公式、等差中项以及等差数列的判定 所占分数:10--25分教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系;教学难点: 通项公式的求解及等差数列的判定。
1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++-=∈或()12,n n a a d n n N -+-=≥∈ 2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+- 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+-()11q a a q d =+- 两式相减,得()p q a a p q d =+- 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+-可得()1n a dn a d =+-,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =-=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a --+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+-(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =-,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+-=-+-⨯=-令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =-,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =-,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥< 所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d -≤<-∈∴=- 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==-其中n N +∈设221n n b a =-(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++--=-=-==----- 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+-=-+∴==-答案:(1)略 (2)12n n a n +=练习5.已知数列{}n a 满足()1114,21n n n a a a n a --==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =- ,34n b n =- 练习6.在等差数列{}n a 中,已知581,2,a a =-= 求1,a d 答案:15,1a d =-=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =-;由b 为2与c 的等差数列,得4c =- 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a -的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==-则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =-=∴=-+∴=-+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =-+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =-,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+--=- 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==-==-(2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n -=+-=-∴===--=- 则1320n b n =-(3)503132*********b =-⨯=- ,设它是{}n a 中的第m 项,则1004785m -=-,则2011m =,即{}n b 中的第503项是{}n a 中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_______________________________________________________________________________ _________________________________________________________________________________ __基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A .11B .12C .13D .14 答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______. 答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项. (3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项.24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n }是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1,∴a 6=13,∴a 3+a 9=2a 6=23. 27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3. ∵lgsin A ,lgsin B ,lgsin C 成等差数列,∴2lgsin B =lgsin A +lgsin C ,即sin 2B =sin A ·sin C ,∴sin A sin C =34. 又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C ,∴sin A sin C =cos (A -C )-cos (A +C )2, ∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0,即A =C =π3,A =B =C . 故△ABC 为等边三角形.。
一元二次不等式及其解法教学重点: 正确理解一元二次不等式的解法;掌握一元二次不等式的不等式的解法;理解二次函数、一元二次方程、一元二次不等式之间的关系;教学难点: 理解二次函数、一元二次方程及一元二次不等式之间的关系。
1. 一元二次不等式(1) 一元二次不等式的定义:一般地,含有1个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次等式;(2) 一元二次不等式的解集:使某个一元二次不等式成立的未知数的取值集合叫做这个一元二次不等式的解集;(3) 同解不等式:如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。
2. 一元二次不等式与相应的函数、方程之间的关系对于一元二次方程()200ax bx c a ++=>设24b ac ∆=-它的解按0,0,0∆>∆<∆=可分为三种情况,列表如下:0>∆0=∆0<∆c bx ax y ++=2c bx ax y ++=2c bx ax y ++=23.一元二次不等式的解法步骤(1)对不等式进行变形,使一端为0,且二次项系数大于0;(2)计算相应方程的根的判别式;(3)当0∆>时,求出相应的一元二次方程的两根;(4)根据一元二次不等式解集的结构,写出其解集。
注:若不等式左侧可因式分解,则可转化为一元一次不等式组求解。
(一看,二算,三写)4.含参数的一元二次不等式的解法(1)二次项系数含参数时,根据一元二次不等式的标准形式需要化二次项系数为正,所以要对参数讨论;(2)解∆得过程中,若∆表达式含有参数且参数的取值影响∆的符号,这时根据∆的符号确定的需要,对参数进行讨论;(3)方程的两根表达式中如果有参数,需要对参数讨论才能确定根的大小,这时要对参数进行讨论。
5.不等式的恒成立问题(1)结合二次函数的图像和性质用判别式法,当x的取值为全体实数时,一般用此法;(2)从函数的最值入手考虑,如大于零恒成立可转化为最小值大于零;(3)能分离变量的尽量把参数和变量分离出来;(4)数形结合,结合图形进行分析,从整体上把握图形。
线性规划中关于特殊点与可行域的有关问题在平面直角坐标系中,二元一次不等式表示它对应的直线0Ax By C ++=某一侧的所有点组成的平面区域,在分析是直线的哪一侧的区域时,我们可以在直线的某一侧取一个特殊点()00,x y ,然后从00Ax By C ++的结果的正负即可判断出表示该直线哪一侧的平面区域.下面就以判断0Ax By C ++≥表示的平面区域是在直线的哪一侧的平面区域问题来加以分析:⑴当C 0≠时,取原点(0,0),当原点坐标使得0Ax By C ++≥成立时,就是含有坐标原点的区域;当不成立的时,就是不含坐标原点的区域。
⑵当0C =时,取点(0,1)或者(1,0)进行验证,使不等式成立的就是含取点的一侧;不成立时就是另一侧。
总之,线性规划中判断可行域的步骤为:①作出直线;②取特殊点;③代入求值;④判断区域.下面举例对该问题加以剖析: 例1:如图所示,其中可以表示右图中阴影部分所表示的区域的不等式组为 。
分析:首先根据右边的图像我们可以求出图中阴影区域的三条边所对应的三条直线分别为:111,,0222y x x y ==-+=,然后我们利用我们经常用的三个特殊点()()()0,00,11,0中的不在直线上的一个进行点验证,从而可以分析出阴影区域所对应的部分是在直线的哪一侧,进而我们可以列出一个满足条件的不等式组。
解析:由已知条件和阴影区域我们可以得出:斜线过(0,12),(12,1),则直线为x -y +12=0,从而我们可以列出: ⎩⎪⎨⎪⎧ 0≤x ≤1212≤y ≤1x -y +12≥0,该不等式组就是图中所对应的阴影区域。
点评:解决本题的关键就是首先要根据图形中的特殊点,求出三条对应的直线方程,然后利用特殊点定域来确定阴影区域表示的是直线的哪一侧,从而最终我们可以得出满足条件的不等式组。
变式训练:如果点1,4P a ⎛⎫ ⎪⎝⎭在上面的例题中的阴影区域内,则点P 的纵坐标的取值范围为( ) A.1324y ≤≤ B. 1344y ≤≤ C. 1325y ≤≤ D. 1142y ≤≤ 答案:A提示:根据已知条件,由于点P 的横坐标为14,带入其中的两条限制直线方程中,我们可以求出此时纵坐标的取值范围1324y ≤≤,从而答案为A 。