1
2
n1
105 , 105 , 105 , , 10 5 ,.
求证:
(1) 这个数列成等比数列;
(2) 这个数列中的任一项是它后面第五
项的 1 ;
10
(3) 这个数列的任意两项的积仍在这个
数列中.
第二十九页,编辑于星期日:十三点 十七分。
练习:
教材P.53练习第3、4题.
第三十页,编辑于星期日:十三点 十七分。
第十五页,编辑于星期日:十三点 十七分。
等比数列的性质:
在等比数列中,m+n=p+q, am,an, ap, aq有什么关系呢?
第十六页,编辑于星期日:十三点 十七分。
等比数列的性质:
在等比数列中,m+n=p+q, am,an, ap, aq有什么关系呢?
am ·an=ap ·aq.
第十七页,编辑于星期日:十三点 十七分。
(1) 5, 15, 45,; (2) 1.2, 2.4, 4.8,; (3) 2 , 1 , 3 ,;
328 (4) 2, 1, 2 .
2
第六页,编辑于星期日:十三点 十七分。
讲授新课
思考:
类比等差中项的概念,你能说出什么
是等比中项吗?
第七页,编辑于星期日:十三点 十七分。
讲授新课
思考:
类比等差中项的概念,你能说出什么 是等比中项吗?
{an}是递增数列;
2. 当q>1, a1<0,或0<q<1, a1>0时, {an}是递减数列;
3. 当q=1时, {an}是常数列;
第二十六页,编辑于星期日:十三点 十七分。
等比数列的增减性:
1. 当q>1, a1>0或0<q<1, a1<0时,
{an}是递增数列; 2. 当q>1, a1<0,或0<q<1, a1>0时,