1无穷小的比较
- 格式:ppt
- 大小:60.00 KB
- 文档页数:16
无穷小的比较是两个数都是无穷小,可以比较相对大小。
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数,序列等形式出现,无穷小量即以数0为极限的变量,无限接近于0。
确切地说,当自变量x无限接近x0或x的绝对值无限增大时,函数值fx与0无限接近,即fx,0或fx等于0,则称fx为当x,x0或x,∞时的无穷小量,特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷小的性质无穷小量不是一个数,它是一个变量,零可以作为无穷小量的唯一一个常量,无穷小量与自变量的趋势相关,若函数在某的空心邻域内有界,则称g 为当时的有界量。
有限个无穷小量之和仍是无穷小量,有限个无穷小量之积仍是无穷小量,有界函数与无穷小量之积为无穷小量,特别地,常数和无穷小量的乘积也为无穷小量,恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
工具/原料
笔(各种笔均可)纸(各种纸均可)
方法/步骤1 引例无穷小的多样性,如何比较? 2 回顾无穷小的定义明确多阶无穷小和等价无穷小的定义 3 学习无穷小的定理1 基于等价无穷小 4 学习无穷小的定理2 基于等价无穷小 5 由等价无穷小,简化的极限运算规则。
和差取大规则,和差替代规则 6 由等价无穷小,简化的极限运算规则。
因式替代规则7 学习例题,反复联系。
8 仔细认真,举一反三!。
无穷小的比较公式无穷小比较是微积分中的一个重要概念,用来比较无穷小的大小。
在学习微积分时,我们经常会遇到一些涉及到无穷小的极限问题,而比较无穷小的大小关系就成为解决这些问题的关键。
首先,我们来回顾下无穷小的定义。
如果一个数列{a_n}对于任意正实数ε,都存在正整数N,使得当n>N时,有,a_n,<ε成立,则称该数列{a_n}为无穷小。
换句话说,数列的极限为零时,我们称它为无穷小。
对于无穷小的比较,我们有以下几个基本的比较原则:1.同类无穷小的比较:如果{a_n}和{b_n}是两个无穷小数列,并且对于任意正实数ε,存在正整数N,当n>N时,有,a_n,<,b_n,<ε成立,则称{a_n}的无穷小阶比{b_n}的无穷小阶低。
2.常数和无穷小的比较:对于任意确定的有限实数a ≠ 0,若 {b_n} 是一个无穷小数列,那么 ab_n (n > N) 是一个相对于 {b_n} 的同类无穷小,其无穷小阶相同。
3.多项式和无穷小的比较:对于一个n次多项式P(x)和一个无穷小数列{a_n},如果存在正整数N和正实数M,使得当n>N时,有,a_n,<M*,P(x),成立,则称{a_n}为P(x)的更高阶无穷小。
使用这些比较原则,我们可以解决一些与无穷小相关的极限问题。
下面举几个例子来说明。
例子1:求极限 lim(n -> ∞) (e^n / n^2)解:首先,我们可以将极限中的分子e^n和分母n^2分别表示为无穷小的形式。
因为e^n是指数函数,其增长速度远大于任何多项式函数,所以e^n是比n^2更高阶无穷小。
所以我们可以得到以下关系:n^2是比1更高阶无穷小,而e^n是比n^2更高阶无穷小。
根据比较原则3,当n->∞时,e^n/n^2是一个相对于n^2的同类无穷小,其无穷小阶比n^2的无穷小阶低。
因为n^2是一个正实数,所以当n->∞时,e^n/n^2的极限为零。
无穷小的比较公式在数学中,无穷小是一种特殊的数值概念,它可以用来描述接近于零的量。
无穷小的比较公式是用来比较两个无穷小的大小关系的公式。
在本文中,将详细介绍无穷小的比较公式,并给出一些具体的例子。
1.高阶无穷小比低阶无穷小大2.函数与它的微分比无穷小大3.无穷小的乘积是无穷小4.极限运算首先来看第一种形式,即高阶无穷小比低阶无穷小大。
假设有两个无穷小量a和b,如果当x趋近于其中一点时,a/x和b/x的极限都为零,且a/x的阶数高于b/x的阶数,则有a比b大。
举个例子,考虑函数f(x)=x和g(x)=x^2,当x趋近于零时,f(x)/x 的极限为1,g(x)/x的极限为0,因为x^2的阶数比x的阶数高,所以可以得出x^2是一个比x大的无穷小。
第二个形式是函数与它的微分比无穷小大。
如果函数f(x)在其中一点处可微分,且其微分f'(x)在该点处不为零,那么当x趋近于该点时,f(x)与f'(x)的比值趋近于零,即f(x)/f'(x)的极限为零。
举个例子,考虑函数f(x)=x^2,它在x=0处可微分,且其导数f'(x)=2x在该点处不为零。
当x趋近于零时,f(x)/f'(x)=x^2/(2x)=x/2的极限为零。
因此,x^2是一个比2x大的无穷小。
第三个形式是无穷小的乘积是无穷小。
如果a是一个无穷小,b是一个有界函数,那么a乘以b也是一个无穷小。
考虑两个无穷小量a和b,其中a是一个无穷小,b是一个有界函数。
当x趋近于其中一点时,a的极限为零,而b的取值在一些区间内有限。
因此,a乘以b的极限仍为零,即a乘以b也是一个无穷小。
最后一个形式是极限运算。
如果有两个无穷小量a和b,且a比b大,那么a和b之间的任何有限运算后的结果仍然是一个无穷小。
举个例子,考虑两个无穷小量a=x,b=x^2、根据前面的分析,x^2是一个比x大的无穷小。
那么,无论我们对a和b进行加法、减法、乘法或除法,结果仍然是一个无穷小。