高数无穷小比较的教案
- 格式:doc
- 大小:75.00 KB
- 文档页数:2
课时授课计划课次序号:05一、课题:§1.6极限存在准则两个重要极限§1.7 无穷小的比较二、课型:新授课三、目的要求:1.了解极限的两个存在准则,并会利用它们求极限;2.掌握利用两个重要极限求极限的方法;3.掌握无穷小阶的概念以及利用等价无穷小替换求极限的方法.四、教学重点:利用两个重要极限以及等价无穷小替换求极限.教学难点:利用极限的存在准则求极限.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–6 1(1)(6),2(3);习题1–7 1,4(3)八、授课记录:九、授课效果分析:复习1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则. 有些函数的极限不能(或者难以)直接应用极限运算法则求得,往往需要先判定极限存在,再用其他方法求得.下面先介绍判定函数极限存在的两个准则,然后介绍两个重要极限.在此基础上,进一步介绍无穷小的比较与等价无穷小的性质.第六节 极限存在准则 两个重要极限一、极限存在准则1. 夹逼准则定理1 如果数列{}{}n n y x 、及{}n z 满足下列条件: (1)()...321,,=≤≤n z x y nn n , (2),,a z a y n n n n ==∞→∞→lim lim 那么数列{}n x 的极限存在,且a x n n =∞→lim 。
证 ,,a z a y n n →→ 使得,0,0,021>>∃>∀N N ε1,n n N y a ε>-<当时,恒有 2,n n N z a ε>-<当时,恒有},,max{21N N N =取上两式同时成立, ,εε+<<-a y a n 即 ,εε+<<-a z a n所以恒有时当,N n >,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n.lim a x n n =∴∞→例1 求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解11112222+<++++<+n n nn n nn n ,而 11limlim22=+=+∞→∞→n n nn n n n , 所以原式极限为1.定理1/ 设在点x 0的某去心邻域有12()()()F x f x F x ≤≤, 且0lim x x →F 1(x )= 0lim x x →F 2(x )=A ,则0lim ()x x f x →=A .证 由已知条件, ∃δ1>0,当x ∈0U (x 0,δ1)时, 12()()()F x f x F x ≤≤.又由0lim x x →F 1(x )=0lim x x →F 2(x )=A 知: ∀ε>0,∃δ2>0,当x ∈0U (x 0,δ2)时,|F 1(x )-A |<ε,∃δ3>0,当x ∈0U (x 0,δ3)时,|F 2(x )-A |<ε.取δ=min(δ1,δ2,δ3),则当x ∈0U (x 0,δ)时,得 A -ε<12()()()F x f x F x ≤≤<A +ε.由极限定义可知,0lim ()x x f x A →=.夹逼定理虽然只对x →x 0的情形作了叙述和证明,但是将x →x 0换成其他的极限过程,定理仍成立,证明亦相仿.例如,若∃X >0使x >X 时有12()()()F x f x F x ≤≤,且lim x →+∞F 1(x )=lim x →+∞F 2(x )=A , 则lim x →+∞f (x )=A.2. 单调有界准则定义 数列{}n x 的项若满足x 1≤x 2≤…≤x n ≤x n +1≤…,则称数列{}n x 为单调增加数列;若满足x 1≥x 2≥…≥x n ≥x n +1≥…,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.定理2 单调有界数列必有极限.该准则的证明涉及较多的基础理论,在此略去.例2 证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证 只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界.当a >b >0时,有 a n +1-b n +1=(a -b )(a n +a n -1b +…+ab n -1+b n )<(n +1)(a -b )a n , 即a n [(n +1)b -na ]<b n +1. (8)取a =1+1n ,b =1+11n +代入(8)式,得 11n n ⎛⎫+ ⎪⎝⎭<1111n n +⎛⎫+ ⎪+⎝⎭,即数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是单调增加的.取a =1+12n ,b =1代入(8)式,得 112nn ⎛⎫+ ⎪⎝⎭<2,从而2112nn ⎛⎫+ ⎪⎝⎭<4,n =1,2,…,又由于 211121n n -⎛⎫+ ⎪-⎝⎭<2112nn ⎛⎫+ ⎪⎝⎭<4,所以11nn ⎛⎫+ ⎪⎝⎭<4对一切n =1,2,…成立,即数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭有界,由收敛准则可知11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.我们将11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的极限记为e ,即 1l i m 1nn n →∞⎛⎫+ ⎪⎝⎭=e .二、两个重要极限利用夹逼定理,可得两个非常重要的极限.1. 第一个重要极限 0sin lim1x x x→=我们首先证明0sin lim1x x x+→=.因为x →0+,可设x ∈(0,2π).如图1-35所示,其中, EAB为单位圆弧,且OA =OB =1,∠AOB =x ,则OC =cos x ,AC =sin x ,DB =tan x ,又△AOC 的面积<扇形OAB 的面积<△DOB 的面积, 即 cos x sin x <x <tan x .因为x ∈(0,2π),则cos x >0,sin x >0,故上式可写为cos x <sin x x<1cos x.由0lim cos 1x x →=,01lim1cos x x→=,运用夹逼定理得 0sin lim 1x x x+→=. 注意到sin x x是偶函数,从而有0sin sin()sin limlim lim 1x x z x x z xxz--+→→→-===-.图1-35综上所述,得 0s i n l i m1x x x →=.例3 证明0tan lim1x x x→=.证 0tan sin 1limlimcos x x x x xxx→→=⋅sin 1limlim1cos x x x xx→→=⋅=.例4 求21cos limx xx→-.解 22220002(sin )sin1cos 1122lim lim lim 222x x x xx x xx x →→→⎛⎫ ⎪-=== ⎪⎪⎝⎭. 例5 求3tan sin lim x x xx →-.解 33tan sin sin (1cos )limlimcos x x x xx x xx x→→--=20s i n 1c o s 11l i m c o s 2x x x x x x→-=⋅⋅=.例6 求1lim sinx x x→∞.解 令u =1x,则当x →∞时,u →0,故01sin lim sinlim1x u u x x u→∞→==.从以上几例中可以看出,0sin lim1x x x→=中的变量可换为其他形式的变量,只要在极限过程中,该变量趋于零.即如果在某极限过程中有lim ()0u x =(()u x ≠0),则sin ()lim1()u x u x =.2.第二个重要极限 1lim (1)e x x x→∞+=前面我们已证明了1lim (1)e nn n→∞+=.对于任意正实数x ,总存在n ∈N ,使n ≤x <n +1,故有1+11n +<1+1x≤1+1n,及1111(1)(1)(1)1nxn n xn++<+<++.由于x →+∞时,有n →∞,而11(1)11lim (1)lime 1111n nn n n n n +→∞→∞+++==+++,1111lim (1)lim (1)(1)e n nn n nnn+→∞→∞+=++= ,由夹逼定理使得1lim (1)e xx x→+∞+=.下面证1lim (1)e xx x→-∞+=.令x =-(t +1),则x →-∞时,t →+∞,故(1)(1)11lim (1)lim (1)lim ()11xt t x t t t xt t -+-+→-∞→+∞→+∞+=+=++lim ()()e 11tt t t t t →+∞==++.综上所述,即有 1l i m (1)e xx x→∞+=.在上式中,令z =1x,则当x →∞时,z →0,这时上式变为1lim (1)e z z z →+=.为了方便地使用以上公式,常将它们记为下列形式:(1) 在某极限过程(x →x 0,x →∞,x →-∞,x →+∞)中,若lim ()u x =∞,则()1lim 1e ()u x u x ⎡⎤+=⎢⎥⎣⎦;(2) 在某极限过程中,若lim ()0u x =,则 []1()lim 1()e u x u x +=.例7 求lim (1)xx k x→∞+(k ≠0).解 l i m (1)l i m (1)xkxk x x k k xx →∞→∞+=+ l i m (1)ekx kkx k x →∞⎡⎤=+=⎢⎥⎣⎦. 例8 求1lim 2xx x x →∞+⎛⎫⎪+⎝⎭. 解 22111lim lim 1lim 1222xxx x x x x x x x +-→∞→∞→∞+--⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭22111lim 1lim 1e22x x x x x +--→∞→∞--⎛⎫⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭ .例9 求0ln(1)limx x x→+.解 1ln(1)limlim ln(1)ln e =1x x x x x x→→+=+=.例10 求0e 1limxx x→-.解 令u =e x -1,则x =ln (1+u ),当x →0时,u →0,故e 11limlimlim1ln(1)ln(1)xx u u u u xu u→→→-===++.例11 求ln ln limx ax a x a→--(a >0).解 令u =x -a ,则x =u +a ,当x →a 时,u →0,故ln ln ln()ln limlimx au x a u a ax au→→-+-=-011limln(1)au u u aaa→=+=.第七节 无穷小的比较同一极限过程中的无穷小量趋于零的速度并不一定相同,研究这个问题能得到一种求极限的方法,也有助于以后内容的学习.我们用两个无穷小量比值的极限来衡量这两个无穷小量趋于零的快慢速度.一、无穷小阶的概念定义 设(),()x x αβ是同一极限过程中的两个无穷小量:lim ()0,lim ()0x x αβ==.若()lim0()x x αβ=,则称()x α为()x β的高阶无穷小,记为α(x )= o (β(x )). 若()lim()x x αβ=∞,则称()x α为()x β的低阶无穷小,记为β(x )= o (α(x )). 若()lim ()x A x αβ=(A ≠0),则称()x α是()x β的同阶无穷小. 特别地,当A =1时,则称α(x )与β(x )是等价无穷小,记为α(x )~β(x ). 若在某极限过程中,α是βk的同阶无穷小量(k >0),则称α是β的k 阶无穷小. 例如:因为01cos lim0x xx →-=,所以当x →0时,1-cos x 是x 的高阶无穷小量,即1-cos x =o (x ) (x →0).因为21cos 1lim2x xx→-=,所以当x →0时,1-cos x 是x 2的同阶无穷小量,即1-cos x =O (x 2)(x →0).因为0sin lim1x x x→=,所以当x →0时,与sin x 与x 是等价无穷小量,即sin x x (x →0).二、等价无穷小的性质等价无穷小在极限计算中有重要作用.定理1 设α ,β为同一极限过程的无穷小量,则()o αββαα⇔=+ .定理2 设,,,ααββ''为同一极限过程的无穷小量,,ααββ'' ,若limαβ存在,则 limlimααββ'='.证 因为,ααββ'' ,则lim1αα'=,lim1ββ'=,由于αααββαββ'''=',又limαβ存在,所以 l i m l i m l i ml i m l i m αααβαβαβββ''==''. 定理2表明,在求极限的乘除运算中,无穷小量因子可用其等价无穷小量替代,这个结论可写为以下的推论.推论1 设,ααββ'',若()lim f x αβ存在或为无穷大量,则 ()()limlimf x f x ααββ'='.推论2 设αα' ,若lim ()f x α存在或为无穷大,则 lim ()lim ()f x f x αα'=. 在极限运算中,常用的等价无穷小量有下列几种:当x →0时,sin ,tan ,arcsin ,arctan ,x x x x x x x x ,1-cos x ~212x ,ex-1~x ,ln (1+x )~x,1~2x ,(1)a x +-1~αx (α∈R ).例1 当x →0时,22~2x x x -,232~x x x -, 2sin ~x x x +, c o s ~2x x .例2 求0tan 7limsin 5x x x→.解 因为x →0时,tan7x ~7x ,sin5x ~5x ,所以 00tan 777limlimsin 555x x x x xx→→==.例3 求0eelimsin sin axbxx ax bx→-- (a ≠b ).解 ()0e ee [e 1]limlimsin sin 2cossin22axbxbx a b xx x a ba b ax bxx x-→→--=+--()0e e1limlim cos2sin22bx a b xx x a b a b xx-→→-=+- 0()lim1()22x a b x a b x→-==- .例4 求223lim ln(1)x x x→∞+. 解 当x →∞时,2233ln(1)xx+,故222233lim ln(1)lim 3x x x x xx→∞→∞+== .例5 当x →0时,tan x -sin x 是x 的几阶无穷小量?解 23330tan sin tan (1cos )12limlimlim2x x x xx x xx x xxx →→→⋅--===, 所以,当x →0时,tan x -sin x 是x 的三阶无穷小量. 例6求21limsin 2x x x→+.解211~()~22x x x +,2sin 2~sin 2~2x x x x +,所以20112limlim sin 224x x xx xx →→==+. 课堂总结1.极限的存在准则:夹逼准则、单调有界准则;2.两个重要极限:1sin 1lim1,lim (1)e lim (1)e xx x x x x x xx→→∞→=+=+=或;3.无穷小的比较:高阶、低阶、同阶、等价、k 阶;4.等价无穷小替换求极限的方法.。
课 题: 无穷小量的比较 目的要求:了解高阶,同阶,等价,k 阶无穷小量的定义熟练掌握等价无穷小量的应用掌握x 0时,常用的等价无穷小量 教学重点:熟练掌握等价无穷小量的定义与应用 教学难点:熟练掌握等价无穷小量的定义与应用 教学课时: 2教学方法:讲练结合 教学内容与步骤:无穷小的比较:同一极限过程中的无穷小量趋于零的速度不一相同,我们用两个无穷小量的比值的极限来衡量这两个无穷小量趋于零的快慢速度。
同时,研究这个问题能得到一种求极限的方法 一般, 无穷小量的商有下列几种情形设α(x )与β(x )是同一极限过程中的两个无穷小量:lim α(x )=0, lim β(x )=0. 定义 设lim α(x )=0, lim β(x )=0. ()(1) lim0,()x x αβ=若则称α(x )是比β(x )高阶的无穷小量, 记作, α(x )=o (β(x )) 或称β(x )是比α(x )低阶的无穷小量, ()lim()x x βα=∞若,则称β(x )是比α(x )低阶的无穷小量.()(2) lim,(0)()x A A x αβ=≠若,则称α(x )是β(x )的同阶无穷小量,记作, α(x )=O (β(x )),特别的,当A=1时,则称α(x )与β(x )是等价无穷小量,记作:α(x )~ β(x ) 例如,0sin lim1x xx→=即sin ~(0)x x x →;201cos lim 12x x x →-=即21cos ~(0)2x x x -→. 定理 设(1)~,~a a ββ'';(2)lim(),A a β'=∞'或 则limlim()A aa ββ'==∞'或.证:limlim lim lim lim lim ().a a A a a a a a a ββββββββ'''''⎛⎫==⋅⋅==∞ ⎪'''''⎝⎭或 推论:设~,~a a ββ'',若()lim f x αβ存在或为无穷大,则:''()lim f x αβ=()lim f x αβ推论:设~a a ',若lim ()f x α存在或为无穷大,则:'lim ()f x α= lim ()f x α 总结:无穷小量的运算过程中,运算式先化为乘积形式,再用等价无穷小量去代换。
高等数学教学教案无穷小的比较函数的连续性与间断点(优秀版)word资料§1.7 无穷小的比较§1. 8 函数的连续性与间断点授课次序07§1. 8 函数的连续性与间断点一、函数的连续性变量的增量: 设变量u 从它的一个初值u 1变到终值u 2, 终值与初值的差u 2-u 1就叫做变量u 的增量, 记作∆u , 即∆u =u 2-u 1.设函数y =f (x )在点x 0的某一个邻域内是有定义的. 当自变量x 在这邻域内从x 0变到x 0+∆x 时, 函数y 相应地从f (x 0)变到f (x 0+∆x ), 因此函数y 的对应增量为∆y = f (x 0+∆x )- f (x 0).函数连续的定义设函数y =f (x )在点x 0 的某一个邻域内有定义, 如果当自变量的增量∆x =x -x 0 趋于零时, 对应的函数的增量∆y = f (x 0+∆x )- f (x 0 )也趋于零, 即0lim 0=∆→∆y x , 或)()(lim 00x f x f x x =→,那么就称函数y =f (x )在点x 0 处连续.注: ①0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x②设x =x 0+∆x , 则当∆x →0时, x →x 0, 因此0lim 0=∆→∆y x ⇔0)]()([lim 00=-→x f x f x x ⇔)()(lim 00x f x f x x =→.函数连续的等价定义2:设函数y =f (x )在点x 0的某一个邻域内有定义, 如果对于任意给定义的正数ε , 总存在着正数δ , 使得对于适合不等式|x -x 0|<δ 的一切x , 对应的函数值f (x )都满足不等式|f (x )-f (x 0)|<ε , 那么就称函数y =f (x )在点x 0处连续.左右连续性: 如果)()(lim 00x f x f x x =-→, 则称y =f (x )在点0x 处左连续.如果)()(lim 00x f x f x x =+→, 则称y =f (x )在点0x 处右连续.左右连续与连续的关系:函数y =f (x )在点x 0处连续⇔函数y =f (x )在点x 0处左连续且右连续.函数在区间上的连续性: 在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续. 连续函数举例:1. 如果f (x )是多项式函数, 则函数f (x )在区间(-∞, +∞)内是连续的. 这是因为, f (x )在(-∞, +∞)内任意一点x 0处有定义, 且)()(lim 00x P x P x x =→.2. 函数x x f =)(在区间[0, +∞)内是连续的.3. 函数y =sin x 在区间(-∞, +∞)内是连续的.高等数学辅导要点( 一 ) 、函数、极限、连续、1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。
高等数学1 教案编号:4教学过程:(含复习上节内容、引入新课、中间组织教学以与如何启发思维等)复习函数极限的定义与其性质.新课一、无穷小定义1如果函数f(x)当x x0(或x)时的极限为零, 那么称函数f(x)为当x x0(或x)时的无穷小.特别地以零为极限的数列{x n }称为n 时的无穷小 例如,因为01lim =∞→x x , 所以函数x 1为当x 时的无穷小. 因为0)1(lim 1=-→x x , 所以函数为x -1当x 1时的无穷小.因为011lim =+∞→n n , 所以数列{11+n }为当n 时的无穷小.讨论: 很小很小的数是否是无穷小?0是否为无穷小?提示 无穷小是这样的函数 在x x 0(或x )的过程中 极限为零很小很小的数只要它不是零作为常数函数在自变量的任何变化过程中 其极限就是这个常数本身 不会为零无穷小与函数极限的关系:定理1 在自变量的同一变化过程xx 0(或x )中, 函数f (x )具有极限A 的充分必要条件是f (x )=A +a其中a 是无穷小. 类似地可证明x 时的情形.例如, 因为333212121xx x +=+, 而021lim 3=∞→x x , 所以2121lim 33=+∞→x x x . 二、无穷大如果当x ®x 0(或x ®¥)时, 对应的函数值的绝对值|f (x )|无限增大, 就称函数f (x )为当x ®x 0(或x ®¥)时的无穷大 记为∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ). 应注意的问题: 当x ®x 0(或x ®¥)时为无穷大的函数f (x ), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ).讨论: 无穷大的精确定义如何叙述?很大很大的数是否是无穷大? 提示: ∞=→)(lim 0x f x x Û"M >0, $d >0, 当0<|x -0x |<d 时, 有|f (x )|>M .正无穷大与负无穷大:+∞=∞→→)(lim )( 0x f x x x , -∞=∞→→)(lim )( 0x f x x x . 例2 证明∞=-→11lim 1x x . 铅直渐近线:如果∞=→)(lim 0x f x x , 则称直线0x x =是函数y =f (x )的图形的铅直渐近线. 例如, 直线x =1是函数11-=x y 的图形的铅直渐近线. 定理2 (无穷大与无穷小之间的关系)在自变量的同一变化过程中, 如果f (x )为无穷大, 则)(1x f 为无穷小; 反之, 如果f (x )为无穷小, 且f (x )¹0, 则)(1x f 为无穷大.。
课题极限存在准则与两个重要极限、无穷小阶的比较课时2课时(90 min)教学目标知识技能目标:(1)掌握极限存在准则与两个重要极限。
(2)理解无穷小阶的比较。
思政育人目标:通过学习极限存在准则与两个重要极限、无穷小阶的比较,培养学生的逻辑思维、辩证思维和创新思维能力;引导学生养成独立思考和深度思考的良好习惯;树立学生实事求是、一丝不苟的科学精神教学重难点教学重点:极限存在准则Ⅰ、极限存在准则Ⅱ教学难点:利用两个重要极限公式求极限的方法教学方法讲授法、问答法、讨论法、演示法、实践法教学用具电脑、投影仪、多媒体课件、教材教学设计第1节课:考勤(2 min)→知识讲解(35 min)→问题讨论(10 min)第2节课:知识讲解(20 min)→问题讨论(10 min)→课堂测验(10 min)→课堂小结(5 min)教学过程主要教学内容及步骤设计意图第一节课考勤(2 min)⏹【教师】清点上课人数,记录好考勤⏹【学生】班干部报请假人员及原因培养学生的组织纪律性,掌握学生的出勤情况知识讲解(35 min)⏹【教师】讲解准则Ⅰ与第一个重要极限,并通过例题讲解介绍其应用准则Ⅰ(夹逼准则)设数列{}na,{}nb,{}nc满足:(1)00N n N+∃∈>Z,时,n n na c b,(2)lim limn nn na b a→∞→∞==(a为常数),则limnnc a→∞=.学习极限存在准则与两个重要极限。
边做边讲,及时巩固练习,实现教学做一体化2例1 求222111lim 2n n n n n n →∞⎛⎫+++⎪+π+π+π⎝⎭.解 对n ∀∈N ,有22221112n nn n n n n n n n n ⎛⎫+++⋅=⎪+π+π+π+π+π⎝⎭, 2222221112n n n n n n n n n n ⎛⎫+++⋅=⎪+π+π+π+π+π⎝⎭, 而1limlim 11n n n n n→∞→∞==π+π+,2221lim lim 11n n n n n →∞→∞==π+π+. 由夹逼准则可知222111lim 12n n n n n n →∞⎛⎫+++= ⎪+π+π+π⎝⎭.上述数列极限存在准则可以推广到函数的极限:准则Ⅰ'(夹逼准则) 若函数()()()f x g x h x ,,在点0x 的某去心邻域内满足: (1)()()()g x f x h x ,(2)0lim ()lim ()x x x x g x h x A →→==,则有0lim ()x x f x A →=.作为准则Ⅰ及准则Ⅰ'的应用,下面证明一个重要极限:0sin lim1x xx→=.证明 在图1-25所示的单位圆中,设圆心角BOA x ∠=,AD 切圆O 于A ,且与OB 延长线相交于D ,于是有AOB AOB OAD S S S <<△△△扇形,即111sin tan 222x x x <<,sin tan x x x <<,不等式两边同时3除以sin x 得11sin cos x x x<<, 不等式两边同时取倒数得sin cos 1x x x <<,02x π⎛⎫∈ ⎪⎝⎭,. 当02x π⎛⎫∈- ⎪⎝⎭,时,02x π⎛⎫-∈ ⎪⎝⎭,,有sin()cos()1x x x--<<-,同样可得sin cos 1x x x <<.所以当22x ππ⎛⎫∈- ⎪⎝⎭,时,sin cos 1xx x<<.又因为0limcos cos01x x →==,0lim11x →=,由判别准则I 知0sin lim 1x xx →=.图1-25例2 求0tan limx xx→.解 00tan sin 11limlim 11cos cos0x x x x x x x →→=⋅=⋅=.例3 求0sin limx kxx→.解 设t kx =,则当0x →时,0t kx =→,于是4000sin sin sin limlim lim 1x x t kx k kx tk k k x kx t →→→==⋅=⨯=.例4 求0sin limsin x axbx→.解 0000sin sin limsin lim lim sin sin sin lim x x x x ax axax a x x bx bx bx bx x→→→→===. 例5 求sin 2()limx x x →π-π-π.解 设t x =-π,则x →π时,0t →,所以0sin 2()sin 2limlim 2x t x tx t→π→-π==-π.⏹ 【学生】掌握准则Ⅰ与第一个重要极限⏹ 【教师】讲解准则Ⅱ与第二个重要极限,并通过例题讲解介绍其应用定义1 如果数列{}n a 满足121n n a a a a +,则称数列是单调递增的;如果数列{}n a 满足121n n a a a a +,则称数列是单调递减的.单调递增数列与单调递减数列统称为单调数列.准则Ⅱ(单调有界原理) 单调有界的数列必存在极限. 不妨设{}n a 是一单调递增的数列,且0M ∃>,使对n ∀,n a M ,则数列{}n a 的通项n a 随n 的增大而不断在数轴上向右平移,但不会超过点M .因此,n a 必然无限接近于某个实数()n a a a M <<,a 便是数列{}n a 的极限,如图1-26所示.图1-265证明:1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.(详见教材)例6 求4lim 1xx x →∞⎛⎫+⎪⎝⎭. 解法1 设4t x=,则当x →∞时,0t →,所以 4144004lim 1lim(1)lim[(1)]e xt t x t t t t x →∞→→⎛⎫+=+=+= ⎪⎝⎭. 解法2 44444444lim 1lim 1lim 1e xxxx x x x x x ⋅→∞→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 例7 求21lim 1xx x →∞⎛⎫- ⎪⎝⎭.解22(2)2111lim 1lim 1lim 1e x x xx x x x x x --⋅---→∞→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫-=+=+=⎢⎥ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 例8 求431lim 12x x x -→∞⎛⎫+ ⎪⎝⎭.解43432221111lim 1lim 1lim 1lim 11e 2222x x x x x x x x x x x --⋅→∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫+=+⋅+=+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭结论 一般地,有公式lim 1e bx cab x a x +→∞⎛⎫+= ⎪⎝⎭.例9 求123lim 21x x x x +→∞+⎛⎫⎪+⎝⎭.解63121233112323e 22lim lim lim lim 1e 1212111e 122xxx x x x x x x x x x x x x x +→∞→∞→∞→∞⎛⎫⎛⎫++ ⎪ ⎪++⎛⎫⎛⎫⎝⎭=⋅=⋅== ⎪ ⎪ ⎪++⎝⎭⎝⎭⎛⎫ ⎪+ ⎪+ ⎪⎝⎭⎝⎭⏹ 【学生】掌握准则Ⅱ与第二个重要极限问题讨论 (10 min )⏹ 【教师】组织学生讨论以下问题1.夹逼准则与极限的定义有何内在联系?2.单调递增(递减)有上界(下界)的数列一定是有界数列吗?⏹ 【学生】讨论、发言通过课堂讨论,活跃课堂气氛,加深学生对知识点的理解第二节课知识讲解 (20 min )⏹ 【教师】讲解无穷小阶的比较,并通过例题讲解介绍其应用定义1 设α,β是同一变化过程中的两个无穷小量, (1)若lim0αβ=,则称α是比β高阶的无穷小量,记为()o αβ=.(2)若limαβ=∞,则称α是比β低阶的无穷小量. (3)若lim c αβ=(c 是不等于零的常数),则称α与β是同阶无穷小量.特别地,若1c =,则称α与β是等价无穷小量,记作~αβ.例1 证明:当0x →时,211cos ~2x x -. 证明 因为22220002sin sin1cos 22lim lim lim 1222x x x x x x x x x →→→⎛⎫ ⎪-=== ⎪ ⎪⎝⎭,所学习无穷小阶的比较。
一、教学目标1. 知识目标:(1)理解无穷大与无穷小的概念,掌握无穷小量的性质。
(2)了解无穷大与无穷小之间的关系,掌握无穷大的分类。
(3)掌握无穷小量的运算规则。
2. 能力目标:(1)能够运用无穷小与无穷大的概念分析实际问题。
(2)能够运用无穷小与无穷大的知识解决函数极限问题。
3. 情感目标:(1)激发学生对数学的兴趣,培养学生严谨的数学思维。
(2)培养学生团结协作、勇于探索的精神。
二、教学内容1. 无穷小与无穷大的概念2. 无穷小量的性质3. 无穷大与无穷小之间的关系4. 无穷小的运算规则5. 无穷小与函数极限的关系三、教学过程(一)导入1. 回顾函数极限的基本概念,引导学生思考无穷小与无穷大的关系。
2. 提出问题:如何理解无穷大与无穷小的概念?它们在数学中有何应用?(二)新课讲解1. 无穷小与无穷大的概念(1)通过实例讲解无穷小与无穷大的概念,使学生理解无穷小与无穷大的含义。
(2)强调无穷小与无穷大是变量,不能与很大的数或很小的数混淆。
2. 无穷小量的性质(1)介绍无穷小量的性质,如:有限性、无穷性、无界性等。
(2)举例说明无穷小量的性质在数学中的应用。
3. 无穷大与无穷小之间的关系(1)讲解无穷大与无穷小之间的关系,包括正无穷、负无穷、无穷大与无穷小的转化等。
(2)举例说明无穷大与无穷小之间的转化。
4. 无穷小的运算规则(1)介绍无穷小的运算规则,如:乘法、除法、乘除混合运算等。
(2)通过实例讲解无穷小运算的步骤,使学生掌握无穷小运算的方法。
5. 无穷小与函数极限的关系(1)讲解无穷小与函数极限的关系,如:无穷小乘以无穷大等于无穷小、无穷小除以无穷大等于0等。
(2)通过实例讲解无穷小与函数极限的关系,使学生理解无穷小在函数极限中的应用。
(三)课堂练习1. 给出一些无穷小与无穷大的实例,让学生判断其是否为无穷小或无穷大。
2. 通过无穷小与无穷小的运算,求解一些函数极限问题。
(四)课堂小结1. 回顾本节课所学内容,强调无穷小与无穷大的概念、性质、运算规则以及与函数极限的关系。
第1章 函数、极限与连续无穷小与无穷大【教学目的】:1. 了解无穷小与无穷大的定义;2. 掌握无穷小的性质;3. 掌握无穷小和无穷大的关系;4. 学会两个无穷小量的比较;5. 熟练使用等价无穷小计算极限。
【教学重点】:1. 掌握无穷小的性质;2. 学会两个无穷小量的比较;3. 熟练使用等价无穷小计算极限。
【教学难点】:1. 学会两个无穷小量的比较;2. 熟练使用等价无穷小计算极限。
【教学时数】:2学时【教学过程】:1.3.1 无穷小量1、无穷小量定义1 如果当0x x →(或∞→x )时,函数)(x f 的极限为0,那么就称函数)(x f 为0x x →(或∞→x )时的无穷小量,简称无穷小.记作()0lim 0=→x f x x (或()0lim =∞→x f x ) 注意:(1))(x f 是否为无穷小量与自变量的变化过程密切相关.0→x 时,x sin 是无穷小量,而2π→x 时,x sin 不是无穷小量. (2)无穷小量不是一个很小的数,而是极限为零的一个变量.特殊地,函数0)(≡x f ,它在自变量的任何变化过程中均为无穷小量.2、无穷小的性质性质1 有限个无穷小量的代数和是无穷小量.性质2 有限个无穷小量的乘积是无穷小量.性质3 有界函数与无穷小量的乘积是无穷小量.特别地,常量与无穷小量的乘积是无穷小量.例1 求xx x 1sin lim 0→. 解 因为0lim 0=→x x ,所以x 是0→x 时的无穷小;而|x 1sin |≤1,所以x 1sin 是有界函数,根据无穷小的性质3,可知01sin lim 0=→xx x .1.3.2 无穷大量定义2 如果当0x x →时,函数)(x f 的绝对值无限增大,那么称函数)(x f 为当0x x →时的无穷大量,简称无穷大.如果函数)(x f 为当0x x →时的无穷大,那么它的极限是不存在的.但为了便于描述函数的这种变化趋势,也称“函数的极限是无穷大”,并记作∞=→)(lim 0x f x x 例如:当0→x 时,x 1无限增大,所以当0→x 时x1是无穷大量.即∞=→x x 1lim 0. 定理1 在自变量的同一变化过程中,如果函数)(x f 是无穷大量,那么)(1x f 是无穷小量;反之,如果函数)(x f 是无穷小量,且)(x f ≠0,那么)(1x f 是无穷大量.1.3.3 无穷小的比较定义3 设βα,均为x 的函数0lim 0=→x x α,0lim 0=→βx x ,且0≠β(0x 可以是∞±或∞), (1) 如果0lim 0=→βαx x ,则称当0x x →时α是β的高阶无穷小,或称β是α的低阶无穷小,记作)(βαo =,(0x x →); (2) 如果C a x =→βαlim ,(0≠C ),则称当0x x →时α与β是同阶无穷小;特别地,当1=C 时,称当0x x →时α与β是等价无穷小,记作βα~(0x x →).常用的等价无穷小为:当x → 0时:x x ~sin ,x x ~tan ,x x ~arcsin ,x x ~arctan ,221~cos 1x x -, x e x ~1-,x x ~)1ln(+,x nx n 1~11-+. 例6 求x x e x x x 2sin )cos 1()1(lim 20--→.解 因为x →0时 x e x~1-, x 2sin ~2x , x cos 1-~x 221, 所以 1221lim 2sin )cos 1()1(lim 22020=⋅⋅=--→→x x x x x x e x x x x .【教学小节】:无穷小与无穷大是极限运算的重要工具。
§1.8 无穷小的比较已知无穷小的和、差、积的结果仍是无穷小,商的结果 却不一定是无穷小,如1sin lim 0=→xx x ,∞==→→20203lim ,03lim x x x x x x ,两个无穷小的比的极限不同情形,反映了无穷小→0的“快慢”程度。
02→x 比03→x 快些,反之慢些,0sin →x 与0→x 程度相仿。
一.无穷小的比较1.定义:设0→α,0→β (0x x →或∞→x ) .若 (1) 0lim =αβ,就说β是比α高阶的无穷小,记作()αοβ=; (2) ∞=αβlim ,就说β是比α低阶的无穷小; (3) 0lim ≠=c αβ,就说β与α同阶的无穷小 (4) 0,0lim >≠=k c k αβ,就说β是关于α的k 阶无穷小 (5)1lim =αβ,就说β与α是等价无穷小,记作βα~。
例(1)∵515sin lim 0=→x x x ,∴x →0时,x sin 与x 5同阶. 0→x 时,x x 1002+与x 同阶,与100x 等价.(2)0→x 时, ,cos 1,tan ,sin x x x -0:1),1ln(→-+x e x∴0→x 时, ,~tan ,~sin x x x x 1,~)1ln(-+x e x x x ~221~cos 1x x -. *并非任何两个无穷小都可比较(极限不存在且不是∞时)。
二.利用等价无穷小的性质求极限1.等价无穷小的性质:设αα'~,ββ'~且βαβαβα''=⇒∃''lim lim ,lim∵αα'~,ββ'~ ∴αβαααβββαβ''='''''=lim lim lim 。
即求无穷小之比的极限,分子、分母(整个或部分因子)可用等价无穷小来代换。
2.例:求极限 (1)353sin 5lim0=→x x tg x , (2)11)1ln(lim 0=-+→x x e x , (3)21sin cos 1lim 0=-→x x x x (4)()21cos 1lim cos 1lim cos sin cos 1sin lim sin sin lim 2003030=-=-=-→→→→x x x x x x x x x tgx x x x x (5)()x x x x x x x ⊄∞→+∞→sin ,sin 1lim 32=0小结:利用等价无穷小代换求极限是计算函数极限的又一重要方法,特别是在求极限的过程中,对于较复杂的因子用其等价无穷小代换可使计算简便。
第13、14、15、16课时:【教学目的】1、 掌握无穷小的比较方法,会用等价无穷小求极限;2、 熟记一些常见的等价无穷小;3、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;4、 了解连续函数的性质与初等函数的连续性。
【教学重点】1、常见的等价无穷小的推导;2、等价无穷小求极限;3、函数连续性的概念(含左连续与右连续)及函数间断点的类型。
【教学难点】判断间断点的类型。
§1. 7 无穷小的比较1.定义:(1)如果0lim=αβ,就说β是比α高阶的无穷小,记作)(αβ =; (2)如果∞=αβlim ,就说β是比α低阶的无穷小, (3)如果0lim ≠=c αβ,就说β是比α同阶的无穷小, (4)如果0,0lim >≠=k c k αβ,就说β是关于α的k 阶的无穷小, (5)如果1lim =αβ,就说β与α是等价的无穷小,记作βα~ 这些中重要的是等价无穷小,结合例题要让学生特别熟练的记住一些常见的等价无穷小。
例1.证明:当0→x 时,x n x n 1~1+ 2.定理1.β与α是等价无穷小的充分必要条件为)(ααβ +=例2.因为当0→x 时,x x ~sin ,x x ~tan ,x x ~arcsin ,221~cos 1x x -, 所以当0→x 时有)(s i n x x x+=,)(tan x x x +=,)(arcsin x x x +=,)(21cos 122x x x +=- 定理2 设αα'~,ββ'~,且αβ''lim 存在,则 αβαβ''=lim lim例3求x x x 3tan 2tan lim 0→,例4求x x x x 3sin lim 30+→,例5求1cos 1)1(lim 3120--+→x x x 注:求极限过程中,一个无穷小量可以用与其等价的无穷 小量代替,但只能在因式情况下使用,和、差情况不能用。
第13、14、15、16课时:
【教学目的】
1、 掌握无穷小的比较方法,会用等价无穷小求极限;
2、 熟记一些常见的等价无穷小;
3、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;
4、 了解连续函数的性质与初等函数的连续性。
【教学重点】
1、常见的等价无穷小的推导;
2、等价无穷小求极限;
3、函数连续性的概念(含左连续与右连续)及函数间断点的类型。
【教学难点】
判断间断点的类型。
§1. 7 无穷小的比较
1.定义:
(1)如果0lim
=α
β,就说β是比α高阶的无穷小,记作)(αβ =; (2)如果∞=α
βlim ,就说β是比α低阶的无穷小, (3)如果0lim ≠=c α
β,就说β是比α同阶的无穷小, (4)如果0,0lim >≠=k c k α
β,就说β是关于α的k 阶的无穷小, (5)如果1lim =αβ,就说β与α是等价的无穷小,记作βα~ 这些中重要的是等价无穷小,结合例题要让学生特别熟练
的记住一些常见的等价无穷小。
例1.证明:当0→x 时,x n x n 1~
1+ 2.定理1.β与α是等价无穷小的充分必要条件为)(ααβ +=
例2.因为当0→x 时,x x ~sin ,x x ~tan ,x x ~arcsin ,22
1~cos 1x x -, 所以当0→x 时有)(sin x x x +=,)(tan x x x +=,)(arcsin x x x +=,)(2
1cos 122x x x +=- 定理2 设αα'~,ββ'~,且αβ'
'lim 存在,则 αβαβ'
'=lim lim
例3求x x x 3tan 2tan lim 0→,例4求x x x x 3sin lim 30+→,例5求1cos 1)1(lim 3
120--+→x x x 注:求极限过程中,一个无穷小量可以用与其等价的无穷 小量代替,但只能在因式情况下使用,和、差情况不能用。
教学小结与学法建议
学完本节课要理解无穷小比较的定义,要牢记课上总结的常见等价无穷小,等价无穷小替换时求极限的一种重要方法,做题时要注意正确的替换方法,在加减法中千万不能用等价无穷小替换,要结合例题和习题掌握牢固和熟练。
师生活动设计P59:1,2,3,4(1)(2)
作业:P59:4(3)(4)。